Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Launch of the EU large-scale integrating project "BlueGenics" to combat osteoporosis

07.12.2012
Project aims to discover the genetic blueprints for new drugs from marine organisms that could help to prevent and to treat major human diseases such as osteoporosis

Searching for substances from the deep sea to combat osteoporosis and other human common diseases is one of the objectives of the new European research project "BlueGenics" which has received funding of EUR 6 million from the European Commission.

Specifically, the international research team, coordinated by Professor Dr. Werner E.G. Müller from the Institute of Physiological Chemistry of the Mainz University Medical Center, intends to identify and to utilize genetic blueprints from marine organisms, including deep-sea sponges and bacteria, for the production of biomedically relevant substances. The novel research approach provided by this research team will allow the sustainable use of marine resources without negative impact on biodiversity.

"As we can see, by funding this joint large-scale research project the European Union has recognized the need to make every effort to develop new and effective drugs for the prevention and treatment of common diseases, for which efficient therapies are still missing, such as osteoporosis," said the coordinator of the BlueGenics project, Professor Dr. Werner E.G. Müller. "I am extremely glad that this project has now been successfully started. BlueGenics brings together leading researchers from nine countries. The unique and complementary expertise provided by these and their advanced equipment provide an excellent basis to reach the ambitious objectives of this project," Müller continued.

The innovative research concept of BlueGenics offers the chance of achieving extraordinary success as seen by the European Commission. The international team of scientists led by the molecular biologist Professor Dr. Werner E.G. Müller together with NanotecMARIN GmbH, a research-based spin-off company at Mainz University, headed by Professor Dr. Heinz C. Schröder and Professor Dr. Xiaohong Wang, both also from the Institute of Physiological Chemistry at JGU, have developed a research strategy that aims to combine research on biomedical-relevant genes from marine animals and bacteria with the most advanced chemical synthesis and structure analysis techniques. The team led by Müller will use this research approach to develop substances up to pre-clinical testing. In this project, the Mainz team will primarily focus on substances that could be used for prophylaxis and/or therapy of osteoporosis as well as on new antimicrobial peptides and compounds with neuroprotective activity.

Müller and his research team have already demonstrated that bioactive substances can be synthesized by applying recombinant molecular biology techniques. They were able to demonstrate that defensin, a toxin and defense peptide produced by sponges, is bioactive if produced in a recombinant way. "This paves the way for exploiting the large treasure of genetic blueprints present in the world-wide oceans for human benefit," Müller said.

The European project BlueGenics brings together the leading researchers from the areas of marine genomics, biosynthesis, and chemical structure analysis. Participants of this project coordinated by Professor Dr. Werner E.G. Müller at the Mainz University Medical Center are 16 research institutions and industrial companies from Germany, France, Croatia, Portugal, Iceland, Italy, Sweden, UK, and China. According to Professor Dr. Dr. Reinhard Urban, Chief Scientific Officer of the University Medical Center, the EU is well advised to fund projects like BlueGenics: "We are practically just at the beginning to exploit marine resources, especially those from the little-explored deep sea, for biomedical purposes. However, it is now already foreseeable that research on deep-sea organisms is likely to produce remarkable results for our society."

BLUE BIOTECHNOLOGY
The so-called Blue Biotechnology is primarily concerned with the biotechnological use of marine organisms. Of particular interest are sponges and deep-sea bacteria that live under extreme conditions in more than 1,000 meters below the sea level. These organisms are considered to be a source of novel valuable substances that can be used in biotechnology and biomedicine. While the majority of the known enzymes break down on exposure to high temperatures, the biocatalysts produced by deep-sea bacteria remain active under extreme conditions, even in the vicinity of marine hydrothermal vents.

What makes blue technology so interesting for research is the fact that even obviously simple organisms, such as marine sponges, are remarkably similar to humans in many ways. The evolutionary relationship between these oldest animals and human beings is surprisingly close, as the Mainz research team has demonstrated in recent years by means of molecular biological techniques. In addition, these organisms produce a variety of substances that have evolved a high degree of specificity and effectiveness during the course of evolution, and hence have attracted increasing interest with regard to their possible therapeutic use in humans, for example for the treatment of viral infections.

Contact
Professor Dr. Werner E.G. Müller
Institute of Physiological Chemistry, Mainz University Medical Center
phone +49 6131 39-25910, fax +49 6131 39-25243, e-mail: wmueller@uni-mainz.de

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/presse/15944_ENG_HTML.php
http://www.uni-mainz.de/magazin/874_ENG_HTML.php

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>