Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lateral gene transfer enables chemical protection of beetles against antagonistic fungi

18.07.2018

Jumping genes in symbionts explain how a beetle and a marine tunicate are protected by highly similar compounds

Like all other living organisms, animals face the challenge of fending off enemies. Using chemical weaponry can be an effective strategy to stay alive. Instead of taking over this task themselves, many marine and terrestrial animals associate with microbial symbionts that can provide such protection.


Lagria villosa beetles are found in different economically important crops. This photo shows an adult L. villosa beetle on a soybean plant, where they can occur in high numbers.

photo/©: Laura Flórez

An international team of researchers led by scientists of Johannes Gutenberg University Mainz (JGU) and the Leibniz Institute for Natural Product Research and Infection Biology in Jena has discovered that bacteria associated to Lagria villosa beetles can produce an antifungal substance very similar to one found in tunicates living in the marine environment. The researchers revealed that this commonality is likely explained by the transfer of genes between unrelated microorganisms.

Lagria villosa beetles, a species introduced to South America from Africa and now an agricultural pest in Brazil, carry Burkholderia gladioli bacteria that had been previously shown to protect the insect eggs against fungal enemies. A single beetle carries not only one, but several strains of closely related B. gladioli bacteria with different abilities to produce defensive substances.

Under natural conditions, one of the strains is especially dominant in the beetles. This, however, is challenging to investigate because it is reluctant to grow if separated from the insect host. Moreover, the genome or complete set of genetic material in this strain has shrunken. "Genome reduction often happens in bacteria that have been living in tight association to a host for a long time.

Yet, the presence of closely related bacteria with such different genome sizes in the same insect is unexpected and suggests that their relationship with the beetle is different," said Dr. Laura Flórez from the Institute of Organismic and Molecular Evolution (iOME) at Mainz University, who is the first author of the study. Professor Martin Kaltenpoth, one of the senior authors of the publication, added: "For the insect, leaving room for this diversity of microbial symbionts might be the key to stay protected from enemies."

The discovery of a new bioactive substance produced by the dominant strain B. gladioli Lv-StB was particularly interesting for the research team. After putting together 28,000 beetle eggs for chemical analyses, Dr. Kirstin Scherlach and Professor Christian Hertweck in Jena identified an especially interesting symbiont-produced compound which can block fungal growth.

The scientists named this new compound lagriamide, after the symbionts' beetle host, Lagria. "Strikingly, lagriamide closely resembles substances that had been found before in the marine environment and that are presumably produced by microbial symbionts of tunicates," said Scherlach. How to explain this remarkable similarity in such different habitats and organisms?

By analyzing the pool of genes in the microbial community of the L. villosa beetles, Jason Kwan and his team at the University of Wisconsin in Madison, USA, identified the genes responsible for the production of lagriamide in the genome of the dominant beetle symbiont. They also found an exciting clue: these genes are located in a so called genomic island, i.e., a region that was likely inserted in the chromosome of the symbiont from an external source.

Jumping genes are a known phenomenon in bacteria and other organisms. However, this is one of the few examples in which there is direct evidence that such transfer of genetic material underlies the defensive potential of a symbiont. It is especially exciting that symbiosis and the acquisition of foreign genetic material can be a versatile means of innovation for animal defense across habitats. These findings also underscore the value of defensive symbionts for the discovery of compounds with antimicrobial properties of potential use for humans.

Images
http://www.uni-mainz.de/bilder_presse/10_iome_oekologie_lagriamid_01.jpg
Lagria villosa beetles are found in different economically important crops. This photo shows an adult L. villosa beetle on a soybean plant, where they can occur in high numbers.
photo/©: Laura Flórez

http://www.uni-mainz.de/bilder_presse/10_iome_oekologie_lagriamid_02.jpg
A Lagria villosa egg clutch on field soil, where they are exposed to a number of potential microbial antagonists.
photo/©: Laura Flórez

http://www.uni-mainz.de/bilder_presse/10_iome_oekologie_lagriamid_03.jpg
A soybean plantation, one of the beetle collection sites in Brazil
photo/©: Rebekka Janke

Read more:
http://www.uni-mainz.de/presse/aktuell/4088_ENG_HTML.php – press release "Beewolves have been successfully using the same antibiotics for 68 million years" (15 Feb. 2018) ;
http://www.uni-mainz.de/presse/aktuell/3386_ENG_HTML.php – press release "Bacteria enable beetles to feed on a leafy diet" (17 Nov. 2017) ;
http://www.uni-mainz.de/presse/aktuell/1628_ENG_HTML.php – press release "Cooperation of burying beetles and their microbiota on carcasses" (19 May 2017) ;
http://www.uni-mainz.de/presse/aktuell/1375_ENG_HTML.php – press release "Symbiotic bacteria: from hitchhiker to beetle bodyguard" (28 April 2017)

Wissenschaftliche Ansprechpartner:

Dr. Laura V. Flórez / Professor Dr. Martin Kaltenpoth
Evolutionary Ecology
Institute of Organismic and Molecular Evolution
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-23572 / phone +49 6131 39-24411
e-mail: laflorez@uni-mainz.de / e-mail: mkaltenpoth@uni-mainz.de
http://www.bio.uni-mainz.de/zoo/oekologie/86_ENG_HTML.php
http://www.bio.uni-mainz.de/zoo/oekologie/58_ENG_HTML.php

Originalpublikation:

L. V. Flórez et al., An antifungal polyketide associated with horizontally acquired genes supports symbiont-mediated defense in Lagria villosa beetles, Nature Communications 9: 2478, 26 June 2018,
DOI:10.1038/s41467-018-04955-6
https://www.nature.com/articles/s41467-018-04955-6

Weitere Informationen:

http://www.bio.uni-mainz.de/zoo/oekologie/index_eng.php – Department of Evolutionary Ecology at the JGU Institute of Organismic and Molecular Evolution

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Monitoring biodiversity with sound: how machines can enrich our knowledge
18.06.2019 | Georg-August-Universität Göttingen

nachricht Uncovering hidden protein structures
18.06.2019 | Universität Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>