Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Large 'herbivores of the sea' help keep coral reefs healthy

10.01.2020

Fishing practices that selectively remove large parrotfish could put corals at risk

Selective fishing can disrupt the delicate balance maintained between corals and algae in embattled Caribbean coral reefs. Removing large parrotfish, which graze on algae like large land mammals graze on grasses, can allow the algae to overtake the corals, with potentially dire consequences for reef health.


A stoplight parrotfish feeding on algae. New research shows that selective fishing of large parrotfish can disrupt the balance between corals and algae in embattled Caribbean reefs.

Credit: Andrew Shantz, Penn State

New experimental research suggests that maintaining a healthy size distribution of parrotfishes in a sea floor ecosystem through smart fishing practices could help maintain reefs that are already facing decline due to climate change.

A paper describing the research by scientists at Penn State and the University of California, Santa Barbara appears online in the journal Ecological Monographs.

"Coral reefs are incredibly beautiful and intrinsically valuable, but they also protect thousands of miles of coastline and provide habitat for astonishing biodiversity that is the major source of protein for nearly a billion people worldwide," said Andrew A. Shantz, Eberly Research Postdoctoral Fellow at Penn State and the first author of the paper. "Understanding how fishing impacts coral ecosystems will help us to protect this invaluable resource."

The researchers used survey data on parrotfish populations from 282 sites across the Caribbean and compared these sites to protected reefs in the Florida Keys to assess how parrotfish populations are impacted by fishing. Surprisingly, the biomass--the total mass of parrotfish in a region--was not impacted by fishing.

Instead the distribution of fish sizes changed. Fishing selectively removes large parrotfish, but the biomass is maintained because many more small parrotfish are able to occupy the region.

"Because biomass remained basically the same in regions where there is heavy fishing, we were interested to see if different sized fish played different ecological roles," said Shantz. "We set up an experiment where we could exclude larger fish from accessing an area to see how changes in the distribution of fish sizes impacted corals and their relationship with algae."

The experiment involved three different enclosures with different sized openings placed on the sea floor around corals in the protected Florida Keys. One enclosure allowed access to fish of any size, the second excluded only the largest parrotfish, and the third excluded large and medium sized parrotfish.

"We found that by excluding large parrotfish, the algae grew four times faster," said Shantz. "By excluding both large and medium parrotfish, the algae grew ten times faster. So even though fishing does not reduce the biomass of the fish, it's the larger fish that keep the algae at bay. Unless we can develop and implement fishing strategies that maintain a healthy distribution of fish sizes--for example, a slot based system with both minimum and maximum size restrictions--the corals in these regions are at risk."

###

In addition to Shantz, the research team includes Mark C. Ladd and Deron E. Burkepile from the University of California, Santa Barbara. The research was funded by the U.S. National Science Foundation and a Florida International University Dissertation Year Fellowship to Shantz.

Media Contact

Sam Sholtis
samsholtis@psu.edu
814-865-1390

 @penn_state

http://live.psu.edu 

Sam Sholtis | EurekAlert!
Further information:
http://science.psu.edu/news/Shantz1-2020
http://dx.doi.org/10.1002/ecm.1403

More articles from Life Sciences:

nachricht World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body
14.01.2020 | Universitätsspital Zürich

nachricht How to make it easier to turn plant waste into biofuels
14.01.2020 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

Im Focus: SuperTIGER on its second prowl -- 130,000 feet above Antarctica

A balloon-borne scientific instrument designed to study the origin of cosmic rays is taking its second turn high above the continent of Antarctica three and a half weeks after its launch.

SuperTIGER (Super Trans-Iron Galactic Element Recorder) is designed to measure the rare, heavy elements in cosmic rays that hold clues about their origins...

Im Focus: LZH’s MOMA laser ready for the flight to Mars

One last time on Earth it has been turned on in France in December 2019. The next time the MOMA laser developed by the Laser Zentrum Hannover e.V. (LZH) is going into operation will be on Mars. The ExoMars rover into which the laser is integrated has now successfully passed the thermal vacuum tests at Airbus in Toulouse, France.

For 18 days the ExoMars rover Rosalind Franklin was subjected to thermal vacuum tests at Airbus. There, it had to withstand strong changes in temperature and...

Im Focus: Atacama Desert: A newly discovered biocoenosis of lichens, fungi and algae shapes entire landscapes

The Atacama Desert in Chile is the oldest and most arid desert on earth. Organisms living in this area have adapted to the extreme conditions over thousands of years. A research team led by Dr Patrick Jung has now discovered and investigated a previously unknown biocoenosis of lichens, fungi, cyanobacteria and algae. It colonises tiny stones, so-called grit and its need for water is satisfied by fog and dew. These organisms also decompose the rock on and in which they live. The scientists believe that this is how they have shaped the landscape of the Atacama Desert. Their study was published in the renowned scientific journal "Gebiology".

Many desert areas have large black spots in the sand. These spots are mineral deposits, so-called desert varnish. In the Atacama Desert, which can be compared...

Im Focus: Nano antennas for data transfer

For the first time, physicists from the University of Würzburg have successfully converted electrical signals into photons and radiated them in specific directions using a low-footprint optical antenna that is only 800 nanometres in size.

Directional antennas convert electrical signals to radio waves and emit them in a particular direction, allowing increased performance and reduced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

International Coral Reef Symposium 2020 Holds Photo Competition

19.12.2019 | Event News

The Future of Work

03.12.2019 | Event News

 
Latest News

Scientists in Mainz develop a more sustainable photochemistry

14.01.2020 | Life Sciences

Laserphysics: At the pulse of a light wave

13.01.2020 | Physics and Astronomy

New function for potential tumor suppressor in brain development

13.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>