Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lack of omega-6 fatty acid linked to severe dermatitis

13.04.2010
University of Illinois scientists have learned that a specific omega-6 fatty acid may be critical to maintaining skin health.

"In experiments with mice, we knocked out a gene responsible for an enzyme that helps the body to make arachidonic acid. Without arachidonic acid, the mice developed severe ulcerative dermatitis. The animals were very itchy, they scratched themselves continuously, and they developed a lot of bleeding sores," said Manabu Nakamura, a U of I associate professor of food science and human nutrition.

When arachidonic acid was added to the animals' diet, the itching went away, he said.

Nakamura's team has been focusing on understanding the function of omega-3 and -6 fatty acids, and doctoral student Chad Stroud developed a mouse model to help them understand the physiological roles of these fats. By knocking out genes, they can create deficiencies of certain fats and learn about their functions.

"Knocking out a gene that enables the body to make the delta-6-desaturase enzyme has led to some surprising discoveries. In this instance, we learned that arachidonic acid is essential for healthy skin function. This new understanding may have implications for treating the flaky, itchy skin that sometimes develops without an attributable cause in infants," he said.

Nakamura explained that our bodies make arachidonic acid from linoleic acid, an essential fatty acid that we must obtain through our diets. It is found mainly in vegetable oils.

Scientists have long attributed healthy skin function to linoleic acid, which is important because it provides the lipids that coat the outer layer of the skin, keeping the body from losing water and energy, which would retard growth, the scientist said.

But skin function seems to be more complicated than that. These itchy mice had plenty of linoleic acid. They just couldn't convert it to arachidonic acid because the gene to make the necessary enzyme had been knocked out, he noted.

Arachidonic acid is also essential to the production of prostaglandins, compounds that can lead to inflammatory reactions and are important to immune function. Common painkillers like aspirin and ibuprofen work by inhibiting the conversion of arachidonic acid to prostaglandins.

"We usually think of inflammation as a bad thing, but in this case, prostaglandins prevented dermatitis, which is an inflammatory reaction. We measured prostaglandin levels in the animals' skin, and when we fed arachidonic acid to the knockout mice, they resumed making these important chemical compounds," he said.

Nakamura cautioned that there are still things they don't understand about the function of this omega-6 fatty acid. "This new knowledge is a starting point in understanding the mechanisms that are involved, and we need to do more research at the cellular level."

The study was published in a recent issue of the Journal of Lipid Research. Co-authors are Chad K. Stroud, Takayuki Y. Nara, Manuel Roqueta-Rivera, Emily C. Radlowski, Byung H. Cho, Mariangela Segre, Rex A. Hess, and Wanda M. Haschek, all of the U of I, and Peter Lawrence, Ying Zhang, and J. Thomas Brenna of Cornell University. Funding was provided in part by a USDA National Needs Fellowship Award and a grant from the National Institutes of Health.

Phyllis Picklesimer | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>