Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lack of coronin 1 protein causes learning deficits and aggressive behavior

26.03.2014

Learning and memory relies on the proper processing of signals that stimulate neuronal cells within the brain.

Researchers at the Biozentrum of the University of Basel, together with an international team of scientists, has uncovered an important role for the protein coronin 1 in cognition and behavior.


The absence of coronin 1 in neurons results in severe neurobehavioral defects. Coronin1 (green) in neurons within the amygdala of the brain. Red: neurofilament as neuronal marker; Blue: nuclear stain

Illustration: University of Basel, Biozentrum

They found that a lack of coronin 1 in mouse and in man is associated with poor memory, defective learning and aggressive behavior. The results, recently published in PLOS Biology, identify a novel risk factor for neurobehavioral dysfunction and reveal a molecular pathway involved in transferring information within neurons.

Organisms must be able to sense signals from the outside and translate these into biochemical cues in order to adequately respond to their environment. This capability is also required to process information that reaches the brain. Within the brain, stimulation of neurons activates genes that are required, for example for learning and memory.

... more about:
»Biozentrum »Lack »cAMP »coronin »deficits »lacking »neurons »signals

In collaboration with an international and interdisciplinary team the research group led by Prof. Jean Pieters from the Biozentrum, University of Basel, has now uncovered the role of an evolutionarily conserved protein, called coronin 1, in providing a link between the extracellular stimulus and neuronal activation that ultimately results in efficient learning and memory in both mice and men.

From the immune system to the brain

In earlier work, Pieters’ team discovered the protein coronin 1 as being essential for the proper transduction of signals in immune cells. In mice lacking coronin 1 the researchers further investigated the molecular mechanism. Surprisingly, these mice showed aberrant behavior. In particular, mice lacking coronin 1 appeared to be far more aggressive and display extreme grooming activity, an indication of reduced sociability.

An in-depth analysis in collaboration with scientists from the Friedrich Miescher Institute in Basel and the University of Bordeaux unveiled profound learning and behavioral problems and severe defects in the ability to activate neurons in the absence of coronin 1.

Activation of a signaling cascade

But how does coronin 1 ensure proper neurobehavioral functioning? Normally, stimulation of the cell surface results in an activation of an intracellular cascade of reactions and ultimately stimulates the production of the signaling molecule cAMP which then activates a number of processes, including the transcription of gene involved in neurobehavior. “We found that in the absence of coronin 1, cell surface stimulation leads to a defective cAMP production”, explains Pieters. “This in turn affects the signal transduction which is finally responsible for the deficits in learning and memory formation.”

Of mice and men

Furthermore, the researchers analyzed the clinical history of a patient lacking coronin 1 due to a mutation: it turned out that this patient showed learning defects and aggressive behavior. With this study, Pieters and his project collaborators not only define a crucial role for coronin 1 in cognition and behavior, but also unravel a coronin 1-dependent signaling pathway that may be explored both for potential risk factors as well as future interventions to modulate neurobehavioral dysfunction.

Original article
Rajesh Jayachandran, Xiaolong Liu, Somdeb BoseDasgupta, Philipp Müller, Chun-Lei Zhang, Despina Moshous, Vera Studer, Jacques Schneider, Christel Genoud, Catherine Fassoud, Fréderic Gambino, Malik Khelfaoui, Christian Müller, Deborah Bartholdi, Helene Rossez, Michael Stiess, Xander Houbaert, Rolf Jaussi, Daniel Frey, Richard A. Kammerer, Xavier Deupi, Jean-Pierre de Villartay, Andreas Lüthi, Yann Humeau, and Jean Pieters
Coronin 1 Regulates Cognition and Behavior through Modulation of cAMP/Protein Kinase A Signaling
PLOS Biology, published March 25, 2014 | doi: 10.1371/journal.pbio.1001820

Further information
Prof. Jean Pieters, University of Basel, Biozentrum, phone +41 61 267 14 94, email: jean.pieters@unibas.ch

www.unibas.ch

Katrin Bühler | Universität Basel

Further reports about: Biozentrum Lack cAMP coronin deficits lacking neurons signals

More articles from Life Sciences:

nachricht Nonstop Tranport of Cargo in Nanomachines
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Researchers find social cultures in chimpanzees
20.11.2018 | Universität Leipzig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>