Knocking out a clock gene in plant cells interrupts mitochondrial function and energy release

Daily rhythms in the biochemical or metabolic activity of cells have long been known across all biological kingdoms. They are governed by the oscillating activity of clock genes, the impairment of which has been shown in mice to be related lifestyle diseases such as obesity. In plants, production of plant biomass is likely to be linked with clock genes.

Recent studies in the genetic model plant Arabidopsis have revealed three key genes involved in the timing mechanism—CCA1, LHY and TOC1. These genes form the centerpiece of several interlocked feedback loops which establish and adjust the daily oscillation pattern.

Kazuki Saito and colleagues from the RIKEN Plant Science Center in Yokohama and Nagoya University studied the molecular impact of mutations in these key clock genes. They analyzed not only the direct changes in the nucleic acid and protein products generated by mutant genes, but they also looked at the differences in the downstream metabolic products formed. Details of their work were published recently in the Proceedings of the National Academy of Sciences (1).

TOC1 is one of five related proteins known as the pseudo-response regulator (PRR) family. Previous work has shown them to be important components in adjusting the circadian system to changes in temperature and light. The researchers focused on a triple mutant of PRR9, 7 and 5 which leads to inability to establish a circadian rhythm under constant light. In previous work the research group demonstrated a strong link between this mutant and stress response in plants.

The triple mutant leads to late-flowering plants with dark green leaves. They are similar in appearance to those generated when the CCA1 gene becomes overactive. But the researchers found the metabolic details of two plant forms to be utterly different. In particular, they were surprised to find that the triple mutant led to a build-up of three key intermediate compounds of the tri-carboxylic acid pathway, the standard energy release process which takes place in the mitochondria of all higher organisms. The impact of the mutant PRR clock genes on the mitochondria was direct and unequivocal.

“We now want to determine the molecular components involved in this link between the clock genes and metabolism,” says Saito.

Fukushima, A., Kusano, M., Nakamichi, N., Kobayashi, M., Hayashi, N., Sakakibara, H., Mizuno, T. & Saito, K. Impact of clock-associated Arabidopsis pseudo-response regulators in metabolic coordination. Proceedings of the National Academy of Sciences USA 106, 7251–7256 (2009).

The corresponding author for this highlight is based at the RIKEN Metabolomics Research Group

Media Contact

Saeko Okada Research asia research news

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors