Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Knocking the 'sox' off cancer and lymphatic disorders

21.10.2008
Researchers have identified a gene critical for the development of the lymphatic system in a discovery that will have implications for treatment of cancer and lymphatic disorders and other diseases.

The team, led by Professor Peter Koopman and Dr Mathias François from the Institute for Molecular Bioscience at The University of Queensland (UQ), found that a single gene - Sox18 - triggers the development of the lymphatic vessels.

"The rate at which new lymphatic vessels can form is thought to be one of the key factors in determining how quickly a tumour can spread and thus how severely a patient will be affected by cancer," Professor Koopman said.

"The lymphatic vessels also play a central role in maintaining fluid balance in the body and carrying infection-fighting white blood cells, so greater knowledge about the lymphatic system can offer insights and suggest therapies for a range of diseases."

The team made the discovery, reported today (Monday, October 20) in leading science journal Nature, by examining mice in which Sox18 had been inactivated. They found that the development of lymphatic vessels was massively disrupted.

"We suspected Sox18 might play a critical role in lymphatic vessel formation after observing that mice with one inactivated copy of the gene displayed similar symptoms to humans with a genetic condition that affects the lymphatic system, known as HLT," Professor Koopman said.

"It turns out that Sox18 has a much more important role than we first thought – in fact, it's the master controller of lymphatic vessel development."

The team will now focus on finding genes regulated by Sox18 and determining how this regulation occurs, which may suggest ways of promoting or preventing lymphatic vessel formation.

"If we know how to prevent lymphatic vessels from forming, then we will be a lot closer to halting the spread of tumours through the body. Conversely, if we know how to stimulate the formation of these vessels, then it might be possible to treat diseases such as lymphedema," Professor Koopman said.

Lymphedema occurs when the lymphatic vasculature is impaired, causing a build-up of fluid in part of the body, which leads to painful and dangerous swelling of that body part, and, if left untreated, deformity.

The discovery was the result of three years of research by an international team of scientists from Australia, Italy and Hong Kong, led by UQ and supported by a number of organisations including the Australian Cancer Research Foundation, the National Health and Medical Research Council of Australia, the Heart Foundation of Australia, and the Australian Research Council.

Bronwyn Adams | EurekAlert!
Further information:
http://www.imb.uq.edu.au

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>