Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kinks, Bends & Repairs: DNA-Bending Protein Studied

31.05.2012
DNA, deoxyribonucleic acid, forms a blueprint of life represented by billions of chemical "base-pairs." But mismatch just one of these complementary pairs, and the genetic code gets altered. While certain proteins can diffuse along DNA strands to search for damaged sites, how they find them -- and how quickly -- remain unanswered questions.

University of Illinois at Chicago physics professor Anjum Ansari hopes to find some answers, supported by a new five-year, $1.14 million National Science Foundation grant.

Ansari and her UIC laboratory team are studying two classes of DNA-bending proteins. One is a "damage recognition" protein that recognizes a mismatched base-pair, binds to that site, and then signals for helper proteins to gather and aid in the repair. The other protein is an enzyme that targets invader DNA, cutting it apart.

Ansari is collaborating with other researchers at UIC, University of Pittsburgh, Wesleyan University and Arizona State University to study different aspects of these proteins.

Ansari's lab is one of only a few equipped to monitor the dynamics of DNA bending in complex with these proteins on timescales ranging from several milliseconds down to as fast hundreds of nanoseconds -- or less than one-millionth of a second.

The instruments in her lab are designed to look at macromolecules as they change their shapes within this time window -- "which is precisely the time window in which proteins recognize their specific binding sites," she said.

Researchers have made measurements at the longer timescales on which proteins diffuse along DNA in search of target sites Ansari said, "but not much is known about the timescale of the recognition process, for virtually any protein."

Her lab's experiments "are designed to make time-resolved measurements of how a protein, when it reaches its target site, transforms the DNA from a conformation in which it is straight to one which is kinked and bent," Ansari said, and to "learn about the recognition mechanism by watching the dynamics -- or time scales -- on which this happens."

Many other biophysical questions about this protein-DNA interaction will be investigated by the team, including the presence of subtle kinks in DNA structure at the damage sites in the absence of a bound protein.

"Clearly, the kinked conformation of the DNA facilitates the [protein's] recognition that something is wrong at the site," Ansari said. "The question we're addressing is, 'Is it the protein that bends and kinks the DNA when it reaches that site?' Or does the DNA, on its own, have a propensity to adopt these locally bent conformations because there's a mismatch -- and the protein, when it is moving along on the DNA, recognizes that something is not right at certain spots?"

DNA gets damaged in various ways -- sometimes during replication, sometimes by ultraviolet radiation, and sometimes through more subtle cellular processes. Damaged DNA can lead to serious diseases, so a better understanding of how proteins make repairs can help when designing new and better therapies.

Ansari will incorporate some aspects of her research in undergraduate physics labs that she plans to develop as part of a new biophysics curriculum at UIC.

Paul Francuch | Newswise Science News
Further information:
http://www.uic.edu

Further reports about: Bends DNA-Bending Kinks Protein Repairs UIC cellular process serious disease

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>