Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Killing cancer by protecting normal cells

14.11.2014

An anti-cancer drug protects normal cells from radiation damage and increases the effectiveness of radiation therapy in prostate cancer models

Although radiation treatments have become much more refined in recent years, it remains a challenge to both sufficiently dose the tumor while sparing the surrounding tissue.

A new anti-cancer drug, already in clinical development, may help address this issue by protecting normal cells - but not the cancer - from the effects of radiation. The research, published November 14th in Molecular Cancer Therapeutics, further suggests this drug may also be useful in treating accidental exposure to radiation.

"It was a stroke of luck that the drug that most effectively protected normal cells and tissues against radiation also has anti-cancer properties, thus potentially increasing the therapeutic index of radiation therapy," says Ulrich Rodeck, M.D., Ph.D., Professor of Dermatology and Cutaneous Biology and Radiation Oncology at Thomas Jefferson University, and senior author on the study.

Together with first author Vitali Alexeev, Ph.D., Assistant Professor, Dermatology and Cutaneous Biology, Dr. Rodeck and colleagues tested five compounds that were shown to have radiation-protective properties in earlier studies. The researchers gave the mice one of the five compounds a day before and for several days after radiation treatment.

A compound called RTA 408 emerged from this screen as a robust radiation protector and its effect was comparable to the only drug currently approved by the FDA for that purpose. (The approved drug, called amifostine, however, has a number side effects including severe nausea or vomiting that make it an unappealing choice for clinicians.) Sites that are usually most susceptible to radiation damage including the gut and blood cells in the bone marrow were both protected in mice treated with RTA 408.

Using human prostate cancer cells growing in mice, the researchers also showed that RTA 408 did not confer radiation protection to the cancer cells. In fact, when RTA 408 was given alone, without radiation, it also slowed the growth of human prostate cancer transplants in mice. In combination, it further amplified the tumor growth inhibitory effects of radiation.

"It was really exciting to see," says Dr. Rodeck, "that combining radiation and RTA-408 more effectively inhibited tumor growth compared to using either one or the other as single treatment modalities."

Dr. Rodeck and colleagues plan to continue to unravel the molecular underpinnings of these radiation-protective effects in order to understand how exactly this compound works and how its mechanism of action might be improved for clinical applications.

RTS 408 is currently being developed by REATA pharmaceuticals for a number of clinical applications, including a trial currently enrolling patients for a topical form of the drug applied to patients who experience radiation dermatitis.

This work was supported by DoD grant W81XWH-12-1-0477, and a pilot project under National Institute of Health grant U19A1091175 to Dr. Rodeck. Additional support was provided by the Prostate Cancer Foundation and by REATA Pharmaceuticals. One of the authors (Keith Ward) is employed by and has a financial interest in REATA Pharmaceuticals, Inc. The authors report no other conflicts of interest.

For more information, contact Edyta Zielinska, 215-955-5291, edyta.zielinska@jefferson.edu.

About Jefferson -- Health is all we do.

Thomas Jefferson University, Thomas Jefferson University Hospitals and Jefferson University Physicians are partners in providing the highest-quality, compassionate clinical care for patients, educating the health professionals of tomorrow, and discovering new treatments and therapies that will define the future of healthcare. Thomas Jefferson University enrolls more than 3,600 future physicians, scientists and healthcare professionals in the Sidney Kimmel Medical College (SKMC); Jefferson Schools of Health Professions, Nursing, Pharmacy, Population Health; and the Graduate School of Biomedical Sciences, and is home of the National Cancer Institute (NCI)-designated Sidney Kimmel Cancer Center. Jefferson University Physicians is a multi-specialty physician practice consisting of over 650 SKMC full-time faculty. Thomas Jefferson University Hospitals is the largest freestanding academic medical center in Philadelphia. Services are provided at five locations -- Thomas Jefferson University Hospital and Jefferson Hospital for Neuroscience in Center City Philadelphia; Methodist Hospital in South Philadelphia; Jefferson at the Navy Yard; and Jefferson at Voorhees in South Jersey.

Article Reference: V. Alexeev, et al., "Radiation protection of the gastrointestinal tract and growth inhibition of prostate cancer xenografts by a single compound," Molecular Cancer Therapeutics, doi: 10.1158/1535-7163.MCT-14-0354, 2014

Edyta Zielinska | EurekAlert!

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>