Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Killing cancer by protecting normal cells

14.11.2014

An anti-cancer drug protects normal cells from radiation damage and increases the effectiveness of radiation therapy in prostate cancer models

Although radiation treatments have become much more refined in recent years, it remains a challenge to both sufficiently dose the tumor while sparing the surrounding tissue.

A new anti-cancer drug, already in clinical development, may help address this issue by protecting normal cells - but not the cancer - from the effects of radiation. The research, published November 14th in Molecular Cancer Therapeutics, further suggests this drug may also be useful in treating accidental exposure to radiation.

"It was a stroke of luck that the drug that most effectively protected normal cells and tissues against radiation also has anti-cancer properties, thus potentially increasing the therapeutic index of radiation therapy," says Ulrich Rodeck, M.D., Ph.D., Professor of Dermatology and Cutaneous Biology and Radiation Oncology at Thomas Jefferson University, and senior author on the study.

Together with first author Vitali Alexeev, Ph.D., Assistant Professor, Dermatology and Cutaneous Biology, Dr. Rodeck and colleagues tested five compounds that were shown to have radiation-protective properties in earlier studies. The researchers gave the mice one of the five compounds a day before and for several days after radiation treatment.

A compound called RTA 408 emerged from this screen as a robust radiation protector and its effect was comparable to the only drug currently approved by the FDA for that purpose. (The approved drug, called amifostine, however, has a number side effects including severe nausea or vomiting that make it an unappealing choice for clinicians.) Sites that are usually most susceptible to radiation damage including the gut and blood cells in the bone marrow were both protected in mice treated with RTA 408.

Using human prostate cancer cells growing in mice, the researchers also showed that RTA 408 did not confer radiation protection to the cancer cells. In fact, when RTA 408 was given alone, without radiation, it also slowed the growth of human prostate cancer transplants in mice. In combination, it further amplified the tumor growth inhibitory effects of radiation.

"It was really exciting to see," says Dr. Rodeck, "that combining radiation and RTA-408 more effectively inhibited tumor growth compared to using either one or the other as single treatment modalities."

Dr. Rodeck and colleagues plan to continue to unravel the molecular underpinnings of these radiation-protective effects in order to understand how exactly this compound works and how its mechanism of action might be improved for clinical applications.

RTS 408 is currently being developed by REATA pharmaceuticals for a number of clinical applications, including a trial currently enrolling patients for a topical form of the drug applied to patients who experience radiation dermatitis.

This work was supported by DoD grant W81XWH-12-1-0477, and a pilot project under National Institute of Health grant U19A1091175 to Dr. Rodeck. Additional support was provided by the Prostate Cancer Foundation and by REATA Pharmaceuticals. One of the authors (Keith Ward) is employed by and has a financial interest in REATA Pharmaceuticals, Inc. The authors report no other conflicts of interest.

For more information, contact Edyta Zielinska, 215-955-5291, edyta.zielinska@jefferson.edu.

About Jefferson -- Health is all we do.

Thomas Jefferson University, Thomas Jefferson University Hospitals and Jefferson University Physicians are partners in providing the highest-quality, compassionate clinical care for patients, educating the health professionals of tomorrow, and discovering new treatments and therapies that will define the future of healthcare. Thomas Jefferson University enrolls more than 3,600 future physicians, scientists and healthcare professionals in the Sidney Kimmel Medical College (SKMC); Jefferson Schools of Health Professions, Nursing, Pharmacy, Population Health; and the Graduate School of Biomedical Sciences, and is home of the National Cancer Institute (NCI)-designated Sidney Kimmel Cancer Center. Jefferson University Physicians is a multi-specialty physician practice consisting of over 650 SKMC full-time faculty. Thomas Jefferson University Hospitals is the largest freestanding academic medical center in Philadelphia. Services are provided at five locations -- Thomas Jefferson University Hospital and Jefferson Hospital for Neuroscience in Center City Philadelphia; Methodist Hospital in South Philadelphia; Jefferson at the Navy Yard; and Jefferson at Voorhees in South Jersey.

Article Reference: V. Alexeev, et al., "Radiation protection of the gastrointestinal tract and growth inhibition of prostate cancer xenografts by a single compound," Molecular Cancer Therapeutics, doi: 10.1158/1535-7163.MCT-14-0354, 2014

Edyta Zielinska | EurekAlert!

More articles from Life Sciences:

nachricht Helping to Transport Proteins Inside the Cell
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>