Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kick-off of EU-Project NanoOnSpect: Cost reduction by online characterisation of nanocomposites

02.05.2011
Using various sensor-based measurement and characterisation methods, an online measurement unit will be developed for compounding processes. The data obtained will be integrated into the database of an expert system and further processed in an artificial neural network. Information from this network will be fed back into the processing equipment, and the manufacturing process will be adapted as necessary.

The physical properties of nanocomposites depend significantly on the shape and distribution of the particles in the matrix. Measurement of the resulting mechanical and electrical properties is currently only possible after the material has been produced. The manufacturing process and parameters also have a significant influence on the properties of the composite.

A "trial and error" approach to material development is often adopted: using different process parameters a variety of compounds and composites are manufactured and subsequently analysed. This approach can be very expensive, particularly where highly functional nanoparticles are used. An additional problem in the nanocomposites sector is the production of reject material, which, due to the high quality requirements, can be up to 100%.

The European collaborative project "NanoOnSpect" aims to solve these problems in the production of polymer nanocomposites:

Using various sensor-based measurement and characterisation methods, an online measurement unit will be developed for compounding processes. The data obtained will be integrated into the database of an expert system and further processed in an artificial neural network. Information from this network will be fed back into the processing equipment, and the manufacturing process will be adapted as necessary. This will allow processes such as the formation of a nanoparticle network or the dispersion of particles in the matrix to be optimised during production, and the melt to be characterised before it exits the processing equipment. A new compounding technology with a much broader spectrum in the area of particle dispersion will help ensure that nanocomposites with significantly improved properties and lower development costs will enter the market from 2015 onwards.

Coordinated by the company Gneuß Kunststofftechnik and the Fraunhofer Institute for Chemical Technology in Germany, seven small and medium-sized enterprises, two industrial associations and three research institutions will be working to implement the new technology.

NanoOnSpect has received funding from the European Community's Seventh Framework Programme (FP7-NMP-2010-SME-4) under grant agreement number 263406.

Key data:
NanoOnSpect: 263406-2 NanoOnSpect CP-TP FP7-NMP-2010-SME-4
Budget: 4.7 million €
Duration: 01.04.2011 bis 31.03. 2015
Partners:
Fraunhofer Institute for Chemical Technology (ICT)
Asociación de Investigación de Materiales Plásticos y Conexas AIMPLAS
Centre de Recerca i Investigació de Catalunya CRIC
Gneuß Kunststofftechnik GmbH
FOS Messtechnik GmbH
Hukseflux Thermal Sensors B.V.
HBH Microwave GmbH
Nexxus Channel srl
Addiplast
C.M.B. B.V. Colorex
European Plastics Converters
Verband Technische Kunststoff-Produkte e.V.

Carolyn Fisher | Fraunhofer-Institut
Further information:
http://www.ict.fraunhofer.de

More articles from Life Sciences:

nachricht Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells
21.09.2018 | NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen

nachricht A one-way street for salt
21.09.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>