Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key protein may explain the anti-aging and anti-cancer benefits of dietary restriction

26.05.2009
Discovery gives scientists new targets for developing and testing drugs that could extend the healthy years of life

A protein that plays a key role in tumor formation, oxygen metabolism and inflammation is involved in a pathway that extends lifespan by dietary restriction.

The finding, which appears in the May 22, 2009 edition of the on-line journal PLoS Genetics, provides a new understanding of how dietary restriction contributes to longevity and cancer prevention and gives scientists new targets for developing and testing drugs that could extend the healthy years of life.

The protein is HIF-1 (hypoxia-inducible factor 1). It helps cells survive by "turning on" when oxygen levels are low. HIF-1 is also active in some forms of human cancer. HIF-1 overexpression is frequently detected in solid tumors; inhibition of HIF-1 has been proved to be an efficient way to prevent cancer growth. Now, scientists at the Buck Institute for Age Research have shown that HIF-1 is also a key player in dietary restriction. HIF-1 is involved in a molecular pathway known to regulate cell growth and metabolism in response to nutrients and growth factors.

"Previous studies on HIF-1 have mainly focused on its roles in oxygen metabolism and tumor development", said Buck faculty member Pankaj Kapahi, PhD, lead author of the study.

Kapahi says the study encourages the investigation of HIF-1 in nutrient sensing pathways. "The data in this study also points to HIF-1 as a likely target for regulating the protective effects of dietary restriction in mammals," said Kapahi.

"Dietary restriction is one of the most robust methods for extending lifespan and delaying age-related disease among various species."

Kapahi says the molecular mechanisms involved in how dietary restriction slows cancer and extends lifespan have been largely unknown. "This study gets us closer to understanding that process and gives us better targets for both designing and testing drugs which could mimic the effects of dietary restriction in humans," said Kapahi.

The research involved nematode worms that were genetically altered to both under and over-express HIF-1. The animals, which are the most-often used model to study aging, were fed different diets. Animals that were designed to over-express HIF-1 did not get the benefit of lifespan extension even though their diets were restricted. Animals that under-expressed HIF-1 lived longer, even when they had a nutrient-rich diet. Furthermore, it was found that the lifespan extension resulting from dietary restriction required activity in signaling pathways in the endoplasmic reticulum, the part of the cell involved in processing and the proper folding of proteins. This finding supports the theory that aging stems from the effects of misfolded proteins and opens up a rich area of investigation to examine the mechanisms by which stress in the endoplasmic reticulum affects lifespan.

Contributors to this work:

Other Buck Institute researchers involved in the study include Di Chen, and Emma Lynn Thomas. The work was supported by the Ellison Medical Foundation, the Larry L. Hillblom Foundation, the American Federation for Aging Research, the Bill and Rita Haynes Foundation, and the National Institute on Aging.

About the Buck Institute:

The Buck Institute is the only freestanding institute in the United States that is devoted solely to basic research on aging and age-associated disease. The Institute is an independent nonprofit organization dedicated to extending the healthspan, the healthy years of each individual's life. The National Institute of Aging designated the Buck a "Nathan Shock Center of Excellence in the Basic Biology of Aging," one of just five centers in the country. Buck Institute scientists work in an innovative, interdisciplinary setting to understand the mechanisms of aging and to discover new ways of detecting, preventing and treating conditions such as Alzheimer's and Parkinson's disease, cancer and stroke. Collaborative research at the Institute is supported by new developments in genomics, proteomics and bioinformatics technology. For more information: www.buckinstitute.org.

Kris Rebillot | EurekAlert!
Further information:
http://www.buckinstitute.org

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>