Key protein aids in DNA repair

Scientists have shown in multiple contexts that DNA damage over our lifetimes is a key mechanism behind the development of cancer and other age-related diseases. Not everyone gets these diseases, because the body has multiple mechanisms for repairing the damage caused to DNA by aging, the environment and other human behaviors – but the mechanisms behind certain kinds of DNA repair have not been well-understood.

In a paper published today in the journal Nature, researchers at the University of North Carolina at Chapel Hill's Lineberger Comprehensive Cancer Center have shown that a particular protein – called Ku – is particularly adept at healing damaged strands of DNA.

According to Dale Ramsden, PhD, associate professor in the department of biochemistry and biophysics and a member of the curriculum in genetics and molecular biology, Ku is a very exciting protein because it employs a unique mechanism to repair a particularly drastic form of DNA damage.

“Damage to DNA in the form of a broken chromosome, or double strand break, can be very difficult to repair – it is not a clean break and areas along the strand may be damaged at the level of the fundamental building blocks of DNA – called nucleotides,” he notes.

Broken chromosomes can be compared to a break in a strand of yarn made up of several different threads or plies. Unless scissors are used to cut the yarn, the strand frays and may break or be damaged at several different places up and down the length of the yarn. These rough ends get “dirty” – making them harder to repair.

“It has been assumed in the past that double strand breaks are the most difficult class of DNA damage to repair and it is often presumed that they simply can not be repaired accurately,” says Ramsden.

The team found that the protein Ku, which has long been appreciated for its ability to find chromosome breaks along a strand of DNA, actually removes the “dirt” at broken chromosome ends, allowing for much more accurate repair than believed possible.

“This protein actually heals at the nucleotide level as well as the level of the chromosome,” says Ramsden, comparing its action to washing and disinfecting a cut before trying to sew it up to promote healing.

The team is hopeful that the discovery of this mechanism for DNA repair may lead to a target for treatment of age-related diseases caused by chromosome damage in the future.

Other team members include Steven Roberts, Natasha Strande, Martin Burkhalter, Christina Strom and Jody Havener from UNC and Paul Hasty from the University of Texas Health Science Center at San Antonio.

Media Contact

Ellen de Graffenreid EurekAlert!

More Information:

http://www.unc.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors