Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key mechanism behind cancer spread is explained

31.10.2008
Scientists have discovered the two key processes that allow cancer cells to change the way they move in order to spread through the body, reports leading scientific journal ‘Cell’ (1).

The progression of cancer cells from one part of the body to another (“metastasis”) is one of the biggest problems in curing cancer, therefore this research brings new hope of future therapies to fight cancer. The discovery has been made by Dr Victoria Sanz-Moreno in the research team led by Professor Chris Marshall at The Institute of Cancer Research, in work funded by Cancer Research UK.

Professor Marshall says:

“The spreading of cancer cells from one part of the body to another, called metastasis, is one of the biggest causes of death from cancer. By explaining a key part of that process, our research brings new hope for future therapies to fight cancer.

“The research has found the constant competition between two proteins called ‘Rac’ and ‘Rho’ is responsible for allowing the cancer cells to change shape and spread through the body.

“We have shown that cells from melanoma (an aggressive type of skin cancer) are able to rapidly alternate between two different forms of movement where cells have either a round shape or a more stretchy “elongated” shape.

“Together with Dr Erik Sahai and Dr Sophie Pinner at the Cancer Research UK London Research Institute we have been able to see cells in live tumours carrying out these different forms of movement. These alternate shapes and ways of moving may enable tumour cells to deal with different situations during cancer spread. For example, tests indicated that a round shaped tumour cell may have more durability to survive in our bloodstream than elongated shaped tumour cells.”

The Rac process involves a protein called NEDD9, (which has previously been shown to be involved in melanoma metastasis) activating Rac through another protein called DOCK3. This Rac activity serves a dual purpose, both encouraging the cell to become elongated and simultaneously suppressing the competing Rho activity. Conversely, when cells adopt the round form a protein activated by Rho, called ARHGAP22, switches off Rac activation.

Dr Victoria Sanz-Moreno says: “Until now the conversion between different types of movement of individual cancer cells had been observed but the key players had not been identified. We are excited to discover that the amount and the activity of these proteins in the tumour cell regulates its shape and the mechanism for it to move and invade surrounding tissue. We hope these insights can be used to help develop future therapies”.

Dr Lesley Walker, Cancer Research UK director of cancer information, said: "Successful treatment tends to be much more difficult if the cancer has spread. This exciting study has shed light on some of the key molecules involved in the signalling pathways that encourage cells to move around the body. Knowing more about how cancer spreads will hopefully lead to the identification of new drug targets which will enable scientists to develop anti-cancer drugs to block these pathways."

Melanoma cells were being studied in this research and their behaviour is also expected to occur in many other types of cancer. Melanomas are a major target for cancer therapies because although they are the least common, they are the most serious type of skin cancer. There are about 160,000 new cases of melanoma worldwide each year, including the rarer types that affect the bowel or eye rather than the skin (2).

(1) "Rac activation and inactivation control plasticity of tumor cell movement". Copies of this paper in Cell are available upon request. It will appear in the print issue of Cell on 31 October 2008.

(2) Ries LAG, et al, eds. SEER Cancer Statistics Review, 1975-2000. Bethesda, MD: National Cancer Institute; 2003: Tables XVI-1-9.

Cathy Beveridge | alfa
Further information:
http://www.icr.ac.uk

Further reports about: Cancer Cell Key Rac anti-cancer drugs cancer cells key molecules melanoma metastasis proteins skin cancer spread tumour tumour cells

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>