Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key to future medical breakthroughs is systems biology

06.01.2009
Crucial breakthroughs in the treatment of many common diseases such as diabetes and Parkinson's could be achieved by harnessing a powerful scientific approach called systems biology, according to leading scientists from across Europe.

In a Science Policy Briefing released today by the European Science Foundation, the scientists provide a detailed strategy for the application of systems biology to medical research over the coming years.

Systems biology is a rapidly advancing field that combines empirical, mathematical and computational techniques to gain understanding of complex biological and physiological phenomena. For example, dozens, or even hundreds, of proteins can be involved in signalling processes that ensure the proper functioning of a cell. If such a signalling network is disturbed in any way, diseases such as cancer and diabetes can result.

Conventional approaches of biology do not have the capacity to unravel these elaborate webs of interactions, which is why drug design often fails. Simply knocking out one target molecule in a biochemical pathway is turning out to be a flawed strategy for drug design, because cells are able to find alternative routes. It is a similar scenario to setting up a roadblock: traffic will grind to a standstill for a short time, but soon motorists will start turning around and using side-roads to get to their destination. Just as the network of roads allows alternative routes to be used, the network of biochemical pathways can enable a disease to by-pass a drug.

Systems biology is now shedding light on these complex phenomena by producing detailed route maps of the subcellular networks. These will make it possible for scientists to develop smarter therapeutic strategies - for example by disrupting two or three key intersections on a biochemical network. This could lead to significant advances in the treatment of disease and help with the shrinking pipeline of pharmaceutical companies using traditional reductionist approaches to drug discovery.

The new policy document, produced by the Life Sciences and Medical Sciences units of the Strasbourg-based European Science Foundation (ESF) calls for a co-ordinated strategy towards systems biology across Europe. The scientists have pinpointed several key disease areas that are ripe for a systems biology approach. These include cancer and diabetes, inflammatory diseases and disorders of the central nervous system.

The report's authors state that the recommendations outlined in the Science Policy Briefing provide a more specific, practical guide towards achieving major breakthroughs in biomedical systems biology, thereby covering issues that had not been previously addressed in sufficient detail. In particular we identify and outline the necessary steps of promoting the creation of pivotal biomedical systems biology tools and facilitating their translation into crucial therapeutic advances.

The report highlights some recent successes where mathematical modelling has played a key role. The conclusions from these examples are that success was achieved when quantitative data became available; that even simple mathematical models can be of practical use and that the interdisciplinary process leading to the formulation of a model is in itself of intrinsic value.

This Science Policy Briefing is the contribution of the ESF to the EC funded Specific Support Action entitled "Advancing Systems Biology for Medical Applications" (SSA LSSG-CT-2006-037673). The recommendations resulted from ten workshops, in which more than 110 acknowledged experts from across Europe participated.

The report's authors believe that, if this document succeeds in prodding European institutions into supporting systems biology, the implementation of the recommendations presented will propel Europe to the forefront of research in systems biology and, in particular, help this interdisciplinary field to fulfil its promise of making a reality of personalised medicine, combinatorial therapy, shortened drug discovery and development, better targeted clinical trials and reduced animal testing.

Thomas Lau | alfa
Further information:
http://www.esf.org

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>