Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key factor combines day and night to hold back morning

18.02.2011
As in manmade timepieces, the movements of the genetic clockworks that lie behind circadian cycles involve a remarkable amount of complexity. Researcher's from RIKEN's Laboratory for Systems Biology report how delayed feedback repression is a key factor in mammalian clock function.

The mammalian circadian clock is thought to arise from the interactions of around 20 transcription factors with specific DNA sequences associated with morning, day, and night expression. Existing models of this genetic network can readily explain the basis for the day and night activities, but the mechanism underlying morning expression remains incompletely understood.

It is thought that delayed negative feedback exerted by the morning (E/E? box) inhibitor Cryptochrome 1 (Cry1), which is itself expressed in evening, plays an important role in keeping the biological clock on time. But just how it achieves this effect is unknown.

Maki Ukai-Tadenuma and Rikuhiro G. Yamada of the Laboratory for Systems Biology (Hiroki R. Ueda, Project Leader), along with colleagues in the Universities of Memphis (USA) and Fribourg (Switzerland), now report how delayed feedback repression is a key factor in mammalian clock function. Published in Cell, this work shows the role of Cry1 as mediator of delayed negative feedback repression and fleshes out the current understanding of the circadian circuitry.

The team began by looking into the basis for the evening expression of Cry1 using reporter genes coding for the luciferase protein to detect transcriptional activity, and found that the Cry1 promoter region induces the expression of genes carrying the daytime expression motif. A closer look at Cry1’s DNA revealed that its intronic region contains a separate sequence that induces nighttime clock genes. They next stitched together a construct including these promoter and intron regions, and ran another reporter assay to observe its behavior, and found that its expression switched on in circadian evening, suggesting that this in-between expression time is a result of the combination of day and night regulatory elements. To test this model, the team tried to rescue clock function in cells with homozygous deletions of both Cry1 and Cry2 by inducing the evening expression of exogenous Cry1. They found that while the Cry1 promoter region alone was ineffective, when the promoter and intron regions were used in conjunction, the gene’s circadian rhythmicity was restored.

Using this same set-up, Ukai-Tadenuma and Yamada next tried changing the onset time of Cry1 expression, and found that as expression neared midday, meaning that the normal phase delay was reduced, the amplitude of circadian oscillations grew smaller, in line with predictions. Similarly, prolonging the delay of exogenous Cry1 expression caused an increase in the length of the restored cycle.

The team's findings were recapitulated by a relatively simple phase vector model, which not only successfully reproduces the findings from the current study, but numerous other aspects of the circadian clock network as well.

"In 1990, Paul Hardin at Texas A&M pointed out the importance of delayed feedback repression in biological clocks, but it has taken 21 years to work out the mechanism behind it," says Ueda. "We will continue exploring whether the current minimal transcriptional network model is complete, or whether new regulatory systems remain to be discovered."

[ Contact ]
Douglas Sipp : sipp(at)cdb.riken.jp
TEL : +81-78-306-3043
RIKEN CDB, Office for Science Communications and International Affairs

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Helping to Transport Proteins Inside the Cell
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>