Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key driver of metastasis identified

31.10.2011
Scientists at Dalhousie University in Nova Scotia have identified a key mechanism of metastasis that could lead to blocking tumor growth if their findings are confirmed.

In a recent issue of Cancer Research, a journal of the American Association for Cancer Research, lead researcher David Waisman, Ph.D., professor in the Departments of Biochemistry and Molecular Biology and Pathology, and Canada Research Chair in Cancer Research at Dalhousie University, detailed the key role the macrophage cell surface protein S100A10 plays in allowing macrophages to move to the site of tumor growth – a process that is essential to tumor development.

Waisman said the findings are an example of the complicated biology of cancer.

"We used to think that the only cells that mattered in a tumor were the cancer cells, and that's it, but now we are beginning to see that other cells must collaborate with cancer cells to drive tumor growth and permit an evolution of the cancer cells into metastatic cells. This change is what causes poor prognosis and ultimately what kills the patient," he said.

Waisman and colleagues discovered that tumors will not grow without macrophage assistance. These macrophages must come from the blood or from other locations in the tissues. How they are able to move through the tissues or from the blood supply into the tumor had always been a mystery.

These macrophages need to chew their way through the tissue that forms a barrier around the growing tumor in order to move into the tumor site and combine with the cancer cells. The researchers found on the outside surface of the macrophage is a protein called S100A10, which enables the macrophage to remove the tissue barriers retarding migration to the tumor site.

Theoretically, blocking either the macrophages or S100A10 chemically could slow, or even stop, tumor growth.

"We found that the protein, S100A10, acts like a pair of scissors on the outside of the macrophages that empowers the macrophages with the ability to chew their way through tissues and enter the tumor site where they release substances that stimulate cancer cell growth and metastatic evolution," said Waisman.

He said the next step is to figure out exactly how S100A10 functions as a molecular scissor and also to identify pharmaceutical agents that can block the action of S100A10, thereby preventing the movement of macrophages to the tumor site. By understanding exactly how S100A10 works at the molecular level, it may even be possible to design agents which block its activity.

The study was funded by a grant from the Canadian Cancer Society Research Institute and the Canadian Institutes of Health Research.

Follow the AACR on Twitter: @aacr #aacr

Follow the AACR on Facebook: http://www.facebook.com/aacr.org

The mission of the American Association for Cancer Research is to prevent and cure cancer. Founded in 1907, the AACR is the world's oldest and largest professional organization dedicated to advancing cancer research. The membership includes 33,000 laboratory, translational and clinical researchers; health care professionals; and cancer survivors and advocates in the United States and more than 90 other countries. The AACR marshals the full spectrum of expertise from the cancer community to accelerate progress in the prevention, diagnosis and treatment of cancer through high-quality scientific and educational programs. It funds innovative, meritorious research grants, research fellowships and career development awards to young investigators, and it also funds cutting-edge research projects conducted by senior researchers.

The AACR has numerous fruitful collaborations with organizations and foundations in the U.S. and abroad, and functions as the Scientific Partner of Stand Up To Cancer, a charitable initiative that supports groundbreaking research aimed at getting new cancer treatments to patients in an accelerated time frame. The AACR Annual Meeting attracts more than 17,000 participants who share the latest discoveries and developments in the field. Special Conferences throughout the year present novel data across a wide variety of topics in cancer research, treatment and patient care, and Educational Workshops are held for the training of young cancer investigators. The AACR publishes seven major peer-reviewed journals: Cancer Discovery; Cancer Research; Clinical Cancer Research; Cancer Epidemiology, Biomarkers & Prevention; Molecular Cancer Therapeutics; Molecular Cancer Research; and Cancer Prevention Research. In 2010, AACR journals received 20 percent of the total number of citations given to oncology journals. The AACR also publishes Cancer Today, a magazine for cancer patients, survivors and their caregivers, which provides practical knowledge and new hope for cancer survivors.

A major goal of the AACR is to educate the general public and policymakers about the value of cancer research in improving public health, the vital importance of increases in sustained funding for cancer research and biomedical science, and the need for national policies that foster innovation and the acceleration of progress against the 200 diseases we call cancer.

Jeremy Moore | EurekAlert!
Further information:
http://www.aacr.org

More articles from Life Sciences:

nachricht A Varied Menu
25.03.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Key evidence associating hydrophobicity with effective acid catalysis
25.03.2019 | Tokyo Metropolitan University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>