Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeping viruses at bay

12.08.2014

Our immunosensory system detects virus such as influenza via specific characteristics of viral ribonucleic acid.

Previously, it was unclear how the immune system prevents viruses from simply donning molecular camouflage in order to escape detection. An international team of researchers from the University of Bonn Hospital and the London Research Institute have now discovered that our immunosensory system attacks viruses on a molecular level. In this way, a healthy organism can keep rotaviruses, a common cause of diarrheal epidemics, at bay. The results have been published in the renowned journal "Nature".


Marion Goldeck, Dr. Martin Schlee (sitting), Dr. Winfried Barchet, Thomas Zillinger and Prof. Dr. med. Gunther Hartmann, Director of the Institute of Clinical Chemistry and Clinical Pharmacology.

(c) Photo: Claudia Siebenhüner/UKB

Every day our bodies are confronted with a variety of viruses and other pathogens. Our immune systems must constantly decide what is "foreign" and what is part of the body itself so that the body's own cells are not inadvertently attacked by its own defense troops. Viruses imitate the body's own structures and thus represent a special challenge for the immune system.

In this way, the immune system works like a sensory organ which continuously detects dangers and initiates the appropriate defense mechanisms. This immunosensory system searches for viruses by surveilling the body's own ribonucleic acid (RNA) for RNA with characteristics typical of viruses. In RNA viruses, RNA is the carrier of the virus's genetic information. To reproduce, viruses must multiply their RNA, and this multiplication leads to the development of molecular patterns which are in turn used to detect the viruses themselves.

It has been known for some time that RIG-I-like receptors (RLRs) play a crucial role in the detection of RNA viruses. These receptors act as “fire alarms” within the immune system: When RNA molecules from viruses bind to these receptors, a signal chain is initiated that leads to the production of substances that can ultimately combat the viruses.

"During amplification of viral RNA, a so-called triphosphate group, consisting of three phosphates, inevitably develops at one end of the newly formed RNA. A few years ago, we were the first to show that it is this triphosphate group which allows RIG-I to detect newly formed viral RNA. Previously, it was believed that viruses can elude this detection via simple deceptive molecular maneuvers," said Prof. Gunther Hartmann, Director of the Institute of Clinical Chemistry and Clinical Pharmacology of the University of Bonn Hospital.

RIG-I: A molecular attack against viruses

Together with scientists from the Immunobiology Laboratory of the London Research Institute in England, the scientists working with Dr. Martin Schlee and Prof. Dr. Gunther Hartmann at the University of Bonn Hospital investigated the immunorecognition of reoviruses. This family includes rotaviruses, which cause serious diarrheal illness and are responsible for the deaths of more than a million children worldwide every year.

The immunorecognition of reoviruses was previously unclear since their RNA does not contain a triphosphate group. Now the researchers discovered that, surprisingly, an RNA structure with two phosphates at the end of the RNA double-strand in reoviruses can likewise trigger RIG-I and alarm the immune system.

"This finding has significance for the detection of RNA viruses that extends far beyond reoviruses: It is comparatively simple for a virus to molecularly change the triphosphate in the course of its development,” said Dr. Schlee. The first step in this process is generally to split off the outermost phosphate of the triphosphate group, which leads to a diphosphate. This step is necessary for the virus to perform further modifications to its RNA and thus don a molecular cloak of invisibility.

However, any form of further molecular camouflage is made extremely difficult for the virus due to the additional highly specialized RIG-I-mediated immunorecognition of the diphosphate. Thus, RIG-I attacks the virus on both fronts, significantly restricting its further development.

"Without the investigation into reoviruses, we would not have discovered this universal mechanism of virus detection," said Prof. Hartmann. Since members of the reovirus family also contain a diphosphate group in their viral RNA, a healthy organism can also detect these viruses and curb these illnesses within a few days. However, malnourished children cannot summon these reserves, and the illness can become life-threatening.

The immune system: a sensory system for health

The researchers see a major application potential in the decoding of virus detection: "We are already currently developing artificially produced copies of viral RNA in order to alert our immune system to viruses in a targeted fashion," said Prof. Hartmann who is also director of the project "Novel Anti-infective Agents" at the German Centre for Infection Research (DZIF). Prof Hartmann is also currently speaker of the Cluster of Excellence ImmunoSensation, which is supported by a 28-million Euro grant from the German Research Foundation (DFG). The Cluster brings together experts from a variety of disciplines at the site and connects them to international research structures.

Publication: Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5’diphosphates, “Nature”, DOI: 10.1038/nature13590

Contact information:

Prof. Dr. med. Gunther Hartmann
Director of the Institute of Clinical Chemistry
and Clinical Pharmacology
of the University of Bonn Hospital
Tel. 0228/28716080
E-Mail: Gunther.Hartmann@ukb.uni-bonn.de

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de

Further reports about: DFG Friedrich-Wilhelms-Universität RIG-I RNA healthy illness modifications structures

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>