Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeping traffic moving

23.05.2011
An enzyme helps control the extension of cellular tendrils by regulating the delivery of supplies needed for growth

The body of the adult fruit fly is covered with hair-like bristles (Fig. 1) that act as sensory organs for detecting tactile stimuli. Each one consists of a single cell that has gradually elongated over the course of pupal development, reinforced by bundles of actin protein filaments.


Figure 1: An electron microscope image of a sensory bristle from the body of the fruit fly Drosophila melanogaster. Copyright : 2011 Tetsuhisa Otani

The signaling protein IKKå helps to regulate this process by controlling the organization of these actin bundles, but a recent study from Shigeo Hayashi and colleagues at the RIKEN Center for Development Biology in Kobe has revealed that IKKå also promotes bristle growth by managing the trafficking of cellular cargoes (1).

Initial experiments by Hayashi and team showed that activated IKKå is primarily found at the tips of developing bristles, where growth-associated cargoes are most likely to be unloaded. “Membranes and associated proteins are water-insoluble and thus do not easily diffuse to distant sites, and one model is that distal trafficking actively delivers such insoluble materials as packages,” explains Hayashi.

Membrane-enclosed bubbles known as endosomes are a core component in this process, using so-called motor proteins to travel along routes defined by a microscopic ‘railway’ of fibers known as microtubules. The researchers found that this trafficking is severely disrupted in the absence of IKKå, with endosomes remaining trapped at the ends of the bristle rather than being distributed throughout the cell.

Hayashi and colleagues determined that IKKå interacts with a protein called Nuf, which links the motor protein Dynein with a key endosome-associated protein and thus contributes to directional transport of cargoes toward the tip of the growing bristle. Upon arrival at the tip, IKKå-mediated inactivation of Nuf sends the newly emptied endosomes on a return trip, thereby completing a ‘recycling’ process. “Such endosomal movement occurs in other cell types, but the shape of bristles makes this shuttling very prominent,” says Hayashi. “I think this is a very good example of how a highly specialized cell and its shape can reveal a mechanism of general significance.”

Many other cells grow in a similar fashion, ranging from the tiny branches that help connect neurons to the hairs on plant roots that assist in water absorption, and Hayashi speculates that similar regulatory mechanisms may also operate in these contexts. Moving forward, he and his colleagues will further explore the apparently central coordinating role of IKKå. “We are currently studying actin as a target,” says Hayashi, “and we are also studying upstream regulators of IKKå, hoping to uncover a comprehensive view of this signaling pathway.”

The corresponding author for this highlight is based at the Laboratory for Morphogenetic Signaling, RIKEN Center for Developmental Biology

Journal information

(1) Otani, T., Oshima, K., Onishi, S., Takeda, M., Shinmyozu, K., Yonemura, S. & Hayashi, S. IKKå regulates cell elongation through recycling endosome shuttling. Developmental Cell 20, 219–232 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

Further reports about: RIKEN cell type motor protein sensory organ synthetic biology

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>