Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeping the immune system on track

10.10.2011
Specialized motor proteins help control immune activation by physically hauling clusters of signaling receptors to a central site for eventual disposal

Specialized immune cells called T cells can recognize threats and induce immune responses through T cell receptors (TCRs), but these receptors do not act alone. Multiple receptors gather together at the cell surface to cooperatively switch on T cells. “The minimum unit for triggering T lymphocyte activation is known as the TCR microcluster [TCR-MC],” explains Takashi Saito of the RIKEN Research Center for Allergy and Immunology in Yokohama. “These are the key structure for T cells to recognize antigens and become activated.”


The immune system in action
Copyright : TimVickers

At the interface between T cells and the antigen-presenting immune cells that switch them on, TCR-MCs accumulate at a structure called the central supramolecular activation cluster (cSMAC). Now, research from Saito and colleagues has revealed unexpected insights into how this accumulation occurs.

Saito and his team were the first to characterize TCR-MC function2, but they were uncertain how these clusters make their way from the periphery to the core of the cSMAC. To understand this phenomenon, they performed a series of experiments in which T cells were placed on an artificial lipid layer that mimics the membrane of an antigen-presenting cell, allowing them to microscopically visualize activation-related events at the T cell surface.

Cellular structures are reinforced by protein fibers that form a network called the cytoskeleton, and Saito and colleagues revealed that TCR-MC movement is mediated by dynein, a ‘motor protein’ that shuttles cargos along these fibers. “We knew lymphocyte activation was regulated through the cytoskeleton,” he says. “But it was most surprising that TCR complexes are physically associated with dynein and that their movement is mediated by assembling with this complex.”

Upon TCR activation, the dynein-facilitated movement drags TCR-MCs laterally along the surface of the membrane towards the cSMAC, a function previously unseen for this motor protein. Pharmacological inhibition of dynein strongly impaired migration of TCR-MCs and undermined their assembly within the cSMAC, as did the selective reduction of a key subunit of the dynein complex.

Intriguingly, the same treatments that impaired TCR-MC migration also enhanced T cell activation. Saito and colleagues therefore concluded that once these clusters reach the center of the cSMAC, they become internalized within the cell and thereby taken out of action. Saito hopes to exploit this effect by learning how the TCR-MC-dynein complex is assembled. “It would be ideal if we had a specific inhibitor of this assembly,” he says, “which could lead to stronger immune status with enhanced activation of T cells.”

The corresponding author for this highlight is based at the Laboratory for Cell Signaling, RIKEN Research Center for Allergy and Immunology

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

Further reports about: Allergy RIKEN T cells TCR TCR-MC cell surface immune cell motor protein

More articles from Life Sciences:

nachricht AI-driven single blood cell classification: New method to support physicians in leukemia diagnostics
13.11.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Small RNAs link immune system and brain cells
13.11.2019 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

Im Focus: Shedding new light on the charging of lithium-ion batteries

Exposing cathodes to light decreases charge time by a factor of two in lithium-ion batteries.

Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory have reported a new mechanism to speed up the charging of lithium-ion...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Magnets for the second dimension

12.11.2019 | Machine Engineering

New efficiency world record for organic solar modules

12.11.2019 | Power and Electrical Engineering

Non-volatile control of magnetic anisotropy through change of electric polarization

12.11.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>