Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keeping an eye on the Japanese genome

16.01.2012
A particular type of age-related macular degeneration in the Japanese population is linked to four regions of the genome

Age-related macular degeneration (AMD) is a common disease that can result in blindness. It is caused by cell death in the eye’s retina, which is partly responsible for transforming visual stimuli into electrical signals to the brain.

Asian populations tend to exhibit a particular type of the disease, called exudative AMD, which includes changes in the blood vessels of the eye. Caucasians, however, tend to exhibit AMD without these vascular abnormalities. Now, a research team led by Michiaki Kubo at the RIKEN Center for Genomic Medicine in Yokohama has identified four genomic areas that increase the risk for exudative AMD in Japanese individuals1.

The researchers searched for genomic regions linked to exudative AMD by investigating single-nucleotide changes in the human genome. They compared the frequencies of 500,000 single-nucleotide changes between individuals with exudative AMD and normal, or control, individuals. Other research groups had previously performed this kind of genome-wide association study (GWAS) in Caucasian populations, but not in the Japanese.

... more about:
»AMD »Caucasians »GWAS »RIKEN »blood vessel »cell death »genomic

Kubo and colleagues began by performing a GWAS on 800 Japanese individuals with exudative AMD and 3,000 Japanese controls; they identified two genomic regions previously linked to AMD in Caucasians. This suggested to the researchers that the mechanisms underlying AMD in both populations are likely to be similar.

In a ‘replication study’ using 700 patients and 15,000 controls, the researchers then carefully examined 77 additional genomic areas that showed potential as candidate exudative AMD-associated regions in their initial GWAS. The replication study yielded two additional genomic regions that were linked to exudative AMD. One of these—on chromosome 4—covered four nearby genes, so the researchers were unable to pinpoint with certainty which of the genes were responsible for the disease risk. However, another region—on chromosome 8—was linked to the gene called TNFRSF10A, which encodes a receptor expressed in the eye that modulates inflammation and cell death.

The variant of the gene that Kubo and colleagues linked to exudative AMD seemed to regulate the expression of the receptor. “We are next planning to investigate exactly how the signaling pathway initiated by this receptor would affect the development of exudative AMD,” explain Kubo and Satoshi Arakawa, the study’s first author.

The identification of these genomic regions that are linked to exudative AMD could aid in the development of new therapies. “Our results will also help in the construction of risk prediction models for exudative AMD,” say Kubo and Arakawa.

The corresponding author for this highlight is based at the Laboratory for Genotyping Development, RIKEN Center for Genomic Medicine

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

Further reports about: AMD Caucasians GWAS RIKEN blood vessel cell death genomic

More articles from Life Sciences:

nachricht Rising water temperatures could endanger the mating of many fish species
03.07.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Moss protein corrects genetic defects of other plants
03.07.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>