Keeping brain development in focus

The various bone morphogenetic protein (BMP) signaling factors play an important role in early neural development in the vertebrate embryo. However, maturation of these tissues ultimately depends on the coordinated activity of factors that suppress BMP activity within the neuroectoderm, a cell population that ultimately gives rise to the nervous system.

Yoshiki Sasai and colleagues at the RIKEN Center for Developmental Biology in Kobe have now revealed a novel regulator of BMP signaling, Jiraiya1, which they originally identified in a screen for genes activated by the BMP inhibitor Chordin in the African clawed frog, Xenopus laevis2. “Jiraiya was intriguing as it encoded a novel membrane protein that had no homology to known proteins, and its expression was neural-specific,” says Sasai.

Unexpectedly, his team determined that the Jiraiya protein acts as a specific inhibitor of BMPRII, one of two core subunits of the BMP receptor, within the neuroectoderm (Fig. 1). BMPRII chemically modifies BMPRI in response to BMP binding; BMPRI subsequently activates downstream components of the signaling cascade. Initial experiments showed that Jiraiya specifically interferes with signaling at a point between ligand binding and BMPRI activation.

When overexpressed in cultured embryonic frog cells, Jiraiya depleted BMPRII from the plasma membrane by sequestering it within complexes in the cytoplasm. Evidence suggests that this protein physically interferes with the delivery of newly synthesized receptor molecules to the cell surface.

BMPRII is part of a larger family of receptor proteins that are relatively similar to one another, but features a distinctive ‘C-terminal tail domain’ (TD) that contains within it the specific Jiraiya-binding motif. This enigmatic ‘EVNNNG’ sequence appears to be a unique feature of BMPRII, although it is closely conserved in receptor homologues from other species. Transplantation of the motif onto a different receptor, ActRIIA, was sufficient to make that protein susceptible to similar Jiraiya-mediated inhibition. “The most intriguing part is that it acts only on the type II subunit of BMPR via this tail-domain whose role in dynamic signaling modulation had not been known,” says Sasai.

He and his colleagues conclude that Jiraiya appears to represent an important mechanism for the cell-specific inactivation of BMP-responsive pathways, and thereby helps define the boundaries of neural tissue development. The Jiraiya gene is found in a broad range of vertebrate species, although expression in the mouse embryo does not seem to follow the same neural-specific pattern of localization seen in frog embryos. Sasai hopes to further clarify its role in mammalian development in future studies.

The corresponding author for this highlight is based at the Laboratory for Organogenesis and Neurogenesis, RIKEN Center for Developmental Biology

Journal information

Aramaki, T., Sasai, N., Yakura, R. & Sasai, Y. Jiraiya attenuates BMP signaling by interfering with Type II BMP receptors in neuroectodermal patterning. Developmental Cell 19, 547–561 (2010).

Sasai, N., Mizuseki, K. & Sasai, Y. Requirement of FoxD3-class signaling for neural crest determination in Xenopus. Development 128, 2525–2536 (2001).

Media Contact

gro-pr Research asia research news

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors