Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Un-junking junk DNA

11.11.2013
A study led by researchers at the University of California, San Diego School of Medicine shines a new light on molecular tools our cells use to govern regulated gene expression. The study was published on line in advance of print November 10 in the journal Nature Structural and Molecular Biology.

"We uncovered a novel mechanism that allows proteins that direct pre-mRNA splicing – RNA-binding proteins – to induce a regulatory effect from greater distances than was thought possible," said first author Michael T. Lovci, of the Department of Cellular and Molecular Medicine, the Stem Cell Research Program and Institute for Genomic Medicine at UC San Diego.

Researchers from California, Oregon, Singapore and Brazil made this finding while working toward an understanding of the most basic signals that direct cell function. According to Lovci, the work broadens the scope that future studies on the topic must consider. More importantly, it expands potential targets of rationally designed therapies which could correct molecular defects through genetic material called antisense RNA oligonucleotides (ASOs).

"This study provides answers for a decade-old question in biology," explained principal investigator Gene Yeo, PhD, assistant professor of Cellular and Molecular Medicine, member of the Stem Cell Research Program and Institute for Genomic Medicine at UC San Diego, as well as with National University of Singapore. "When the sequence of the human genome was fully assembled, under a decade ago, we learned that less than 3 percent of the entire genome contains information that encodes for proteins. This posed a difficult problem for genome scientists – what is the other 97 percent doing?"

The role of the rest of the genome was largely a mystery and was thus referred to as "junk DNA." Since then sequencing of other, non-human, genomes has allowed scientists to delineate the sequences in the genome that are remarkably preserved across hundreds of millions of years of evolution. It is widely accepted that this evidence of evolutionary constraint implies that, even without coding for protein, certain segments of the genome are vital for life and development.

Using this evolutionary conservation as a benchmark, scientists have described varied ways cells use these non-protein-coding regions. For instance, some exist to serve as DNA docking sites for proteins which activate or repress RNA transcription. Others, which were the focus of this study, regulate alternative mRNA splicing.

Eukaryotic cells use alternative pre-mRNA splicing to generate protein diversity in development and in response to the environment. By selectively including or excluding regions of pre-mRNAs, cells make on average ten versions of each of the more than 20,000 genes in the genome. RNA-binding proteins are the class of proteins most closely linked to these decisions, but very little is known about how they actually perform their roles in cells.

"For most genes, protein-coding space is distributed in segments on the scale of islands in an ocean," Lovci said. "RNA processing machinery, including RNA-binding proteins, must pick out these small portions and accurately splice them together to make functional proteins. Our work shows that not only is the sequence space nearby these 'islands' important for gene regulation, but that evolutionarily conserved sequences very far away from these islands are important for coordinating splicing decisions."

Since this premise defies existing models for alternative splicing regulation, whereby regulation is enacted very close to protein-coding segments, the authors sought to define the mechanism by which long-range splicing regulation can occur. They identified RNA structures – RNA that is folded and base-paired upon itself – that exist between regulatory sites and far-away protein-coding "islands." Dubbing these types of interactions "RNA-bridges" for their capacity to link distant regulators to their targets, the authors show that this is likely a common and under-appreciated mechanism for regulation of alternative splicing.

These findings have foreseeable implications in the study of biomedicine, the researchers said, as the RNA-binding proteins on which they focused – RBFOX1 and RBFOX2 – show strong associations with neurodevelopmental disorders, such as autism and also certain cancers. Since these two proteins act upstream of a cascade of effects, understanding how they guide alternative splicing decisions may lead to advancements in targeted therapies which correct the inappropriate splicing decisions that underlie many diseases.

Additional contributors to the paper include Justin Arnold, Tiffany Y. Liang, Thomas J. Stark, Katlin B. Massirer and Gabriel A. Pratt, UC San Diego; Sherry Gee, Marilyn Parra, Dana Ghanem, Henry Marr and John G. Conboy, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley; Lauren T. Gehman and Douglas Black, UCLA Department of Microbiology, Immunology and Molecular Genetics and Howard Hughes Medical Institute, UCLA; Shawn Hoon, Nanyang Technological University, Singapore; and Joe W. Gray, Oregon Health and Science University.

Support was provided in part by the National Institutes of Health, (U54 HG007005, R01 HG004659, R01 GM084317 and R01 NS075449,HL045182,DK094699,CA112970, CA126551 and DK032094); and by the Director, Office of Science, and Office of Biological & Environmental Research of the US Department of Energy.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>