Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Johns Hopkins researchers uncover genes at fault for cystic fibrosis-related intestinal obstruction

24.04.2012
Researchers at Johns Hopkins have identified a gene that modifies the risk of newborns with cystic fibrosis (CF) developing neonatal intestinal obstruction, a potentially lethal complication of CF.

Their findings, which appeared online March 15 in PLoS Genetics, along with the findings of their Toronto-based colleagues, published April 1 in Nature Genetics, may lead to a better understanding of how the intestines work and pave the way for identifying genes involved in secondary complications of other disorders.

Soon after birth, most babies excrete their first stool, a tar-like substance called meconium. But not babies with neonatal intestinal obstruction, or meconium ileus (MI), which affects 15 percent of newborns with CF and, rarely, newborns without CF. Their stool is different.

"It is abnormally viscous due to high protein content and low levels of hydration, and the child can't move it through the intestine," says Garry Cutting, M.D., professor of pediatrics at the Johns Hopkins McKusick-Nathans Institute of Genetic Medicine.

The condition results in death if not treated by surgery or enema. But why some newborns with CF get it and others don't is not well understood. To better understand why this is so and to develop models for finding so-called modifier genes—genes that modify the effects of other genes—Cutting and his colleagues aimed to figure out which modifier genes contribute to the development of MI. (From their previous work, they already knew that modifier genes contribute to its development.)

Working with Toronto-based collaborators, members of Cutting's team looked for gene variants that occur in CF patients with MI. They knew that CF is caused by disruption of the CFTR gene, which encodes for a cell membrane protein, so they thought that maybe the genes that alter CFTR's activity and cause MI might also encode for cell membrane proteins; after all, a cell membrane protein is more likely to interact with a nearby cell membrane protein than with a protein that's deep inside the cell. They tested DNA samples from 3,763 CF patients—611 who had had MI and 3152 who hadn't—to compare genes that encode for cell membrane proteins to those that encode for unrelated proteins. Three of the 155 genes tested that encode for cell membrane proteins correlated with risk for MI, compared with none of the 231 genes tested that encode for unrelated proteins.

"These genes have common variants that all of us happen to be carrying around," says Cutting, "and just by chance, if you have a child with CF, these common variants play a role in modifying risk for meconium ileus." The researchers wanted to look for additional gene variants associated with an increased risk for MI, using a different approach.

In an earlier study, Cutting's team had found a region of human chromosome 8 to be linked to MI. To pinpoint which gene within that region leads to the condition, the researchers analyzed the DNA of 133 families with at least two CF children, at least one of whom previously had MI. The DNA was tested to determine which parts of chromosome 8 parents had passed down to their children who had MI.

Using this approach, the researchers found variants of the methionine sulfoxide reductase (MSRA) gene—in this case, a particular combination of DNA alterations close to and within the gene—that appeared significantly more often in children who had MI. In an unrelated CF patient population from Canada, they found evidence of the same link between MSRA and MI, which helped confirm their results.

While the researchers now knew that CF patients with a certain MSRA gene variant tended to have had MI as newborns, they didn't yet know whether MSRA actually plays a role in MI and hence whether it is truly a modifier gene. To address this question, they turned to mice engineered to have CF that tend to die from intestinal obstruction and developed three genetically modified versions of these mice: one with both MSRA genes intact, one with only one intact, and one with none intact. The fewer the copies of intact MSRA genes, the more likely the mice were to survive. In other words, the loss of MSRA protected the mice from fatal intestinal obstruction.

Cutting and his colleagues don't know how exactly the loss of MSRA reduces risk for fatal intestinal obstruction, but they suspect that MSRA's ability to alter the activity of specific intestinal enzymes may be the key. They suspect that with reduced levels of MSRA, the enzymes are free to do their job breaking down proteins that make up meconium so that meconium can pass through the intestines and be evacuated normally at birth.

The researchers' work on MSRA could shed light on how meconium normally gets broken down in the intestines. Moreover, use of the techniques pioneered by Cutting and his colleagues may lead to identification of modifier genes that play roles in other complications of CF, like lung function, and in other diseases caused by a single gene, like Huntington's disease.

The studies were funded by the National Institutes of Health (NHLBI and NIDDK) and the Cystic Fibrosis Foundation.

Authors on the PLoS Genetics paper are: Lindsay B. Henderson, Vishal K. Doshi, Scott M. Blackman, Kathleen M. Naughton, and Garry R. Cutting of Johns Hopkins; Rhonda G. Pace and Michael R. Knowles of University of North Carolina at Chapel Hill; Jackob Moskovitz of University of Kansas, Lawrence; Peter R. Durie of Hospital for Sick Children, Toronto, Ontario, Canada; and Mitchell L. Drumm of Case Western Reserve University.

Authors on the Nature Genetics paper are: Lei Sun, Johanna Rommens, Weili Li, Peter R Durie, Lisa Strug of University of Toronto, Toronto, Ontario, Canada; Harriet Corvol, Annick Clement and Pierre-Yves Boëlle of Pierre et Marie Curie University, Paris, France ; Xin Li, Theodore Chiang, Fan Lin, Ruslan Dorfman, Rashmi V Parekh, Mary Corey, Julian Zielenski of the Hospital for Sick Children, Toronto, Ontario, Canada; Pierre-François Busson of St Antoine Hospital, Paris, France; Diana Zelenika of Centre National de Génotypage, Evry, France ; Scott Blackman, Vishal Doshi, Lindsay Henderson, Kathleen Naughton and Garry R Cutting of Johns Hopkins; Wanda K O'Neal, Rhonda G Pace, Jaclyn R Stonebraker, Sally D Wood and Fred A Wright, and Michael R. Knowles of University of North Carolina at Chapel Hill; and Mitchell L. Drumm of Case Western Reserve University.

On the Web:
http://www.hopkinsmedicine.org/geneticmedicine/
http://www.hopkinsmedicine.org/geneticmedicine/People/Faculty/cutting.html
http://www.plosgenetics.org/home.action
http://www.nature.com/ng/index.html

Audrey Huang | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>