Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Johns Hopkins researchers turn off severe food allergies in mice

04.10.2010
New study suggests immune system can be trained to tolerate peanuts, milk, more

Johns Hopkins scientists have discovered a way to turn off the immune system’s allergic reaction to certain food proteins in mice, a discovery that could have implications for the millions of people who suffer severe reactions to foods, such as peanuts and milk.

The findings, published online in the journal Nature Medicine, provide hope that the body could be trained to tolerate food allergies that lead to roughly 300,000 emergency room visits and 100 to 200 deaths each year.

The research team, led by Shau-Ku Huang, Ph.D., a professor of medicine, and Yufeng Zhou, M.D., Ph.D., a postdoctoral fellow in the Division of Allergy and Clinical Immunology at Johns Hopkins University School of Medicine, discovered that one kind of immune cell in the gastrointestinal tract called lamina propria dendritic cells (LPDC) — considered the first line of defense for a body’s immune system — expresses a special receptor, SIGNR1, which appears on the cells’ surface and binds to specific sugars.

By targeting this receptor using sugar-modified protein, researchers were able to keep food proteins that would have induced a severe, even deadly, allergic reaction from causing any serious harm.

“There is no cure for food allergies, and the primary treatment is avoidance of the offending protein,” Zhou says. “This could teach our bodies to create a new immune response and we would no longer be allergic to the protein.”

The researchers hope to confirm whether this promising process in mice can also occur in people.

Food allergies are triggered by the immune system and, in some people, can cause severe symptoms or even a life-threatening reaction known as anaphylaxis. In the United States, it is estimated that six to eight percent of children under the age of three and nearly four percent of adults have food allergies, and the prevalence is rising. Because of the extreme difficulty in avoiding all food allergen exposure and the lack of effective treatments, preventive and therapeutic strategies are urgently needed, Zhou says.

In the laboratory, Zhou and his colleagues took a food protein that causes allergies in mice and modified it by adding special sugars. They hypothesized that, when ingested by the mice, the modified proteins would be able to bind to what are known as the SIGNR1 receptors on the immune system cells. Bound in this way, the immune system would learn to tolerate the modified food protein — and the protein would no longer induce an allergic reaction, even when consumed in its unmodified form.

Zhou fed his mice the modified protein once a day for three days. Five days later, he tested them by feeding them the protein in its unmodified form. Another group of mice was not fed the modified protein at all. The severity of the allergic response to the unmodified protein — which in the control-group mice tended to be tremors, convulsions and/or death — was significantly decreased in those mice that had been pre-fed the modified protein. Some still had minor reactions like itchiness or puffiness around the eyes and snout, but none had serious ones. These mice appeared to be desensitized to the food protein, even when it was fed to them in its unmodified form, says Zhou. In this model, SIGNR1 plays a key role in shutting off some responses in the immune cells, but whether this is the only function of this receptor is, at present, unknown.

Other Johns Hopkins researchers on the study include Hirokazu Kawasaki, Shih-Chang Hsu, Reiko T. Lee, Xu Yao, Beverly Plunkett, Jinrong Fu and Yuan C. Lee.

Stephanie Desmon | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Researchers target protein that protects bacteria's DNA 'recipes'
21.08.2018 | University of Rochester

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>