Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jacobs researchers develop new carbene complexes for versatile industrial application

20.03.2013
Carbenes are considered rather unstable carbon compounds, whose synthesis in the form of carbene complexes showed only first results in the 1970s.

N-Heterocyclic carbenes (NHC) in particular were soon used in pharmaceutical and technical processes. Scientists at Jacobs University have now developed new ways of synthesizing stable NHC-complexes of main-group elements, which are user-friendly. They can be used as chemical overcharge protection in lithium ion batteries or possibly as liquid crystals in LC-displays.


New compounds with liquid-crystalline characteristics
Photo: Jacobs University

The German Research Foundation, the Federal Ministry of Economics and Technology and the Merck KGaA support the research with a total of €1.2million.

Starting from the precursor DFI (1,3-dimethyl-2,2-difluoroimidazolidine) Gerd-Volker Röschenthaler, Professor of Chemistry at Jacobs University and Dr. Tobias Böttcher for the first time produced a carbene complex of phosphor(V) through oxidative addition to PF3 and later from easier-to handle PCl3.

“Our aim was to find synthetic possibilities, which are easy to apply and which could simplify processes in research and development,” says Prof. Röschenthaler.

The new carbene complex NHC-PF5 allows for a variety of practical applications. In cooperation with Prof. Martin Winter from the MEET Institute at the University of Münster the Jacobs researchers learned that NHC-PF5 could be effective as chemical overcharge protection in lithium ion batteries: By adding the complex to its electrolyte components, the battery deactivated at 4.6 volt. An overcharge causing the battery to burst, ignite or explode can be prevented. The scientists are now looking into the reasons why NHC-PF5 serves well as an overcharge protection. Their collaborative research is supported by the Federal Ministry of Economics and Technology as well as industrial partners - among them BASF, Volkswagen AG, SGL Carbon, Toda Europe and Merck. Together with the University of Münster a patent has been filed for “Electrolyte additive for lithium-based energy sources” (University of Münster, Jacobs University Bremen), DE 10 2011 055 028.3, PCT/EP2012/071544).

In cooperation with Dr. Matthias Bremer from Merck, Prof. Röschenthaler, Dr. Böttcher and their team (Dr. Romana Pajkert and Dr. Maksym Ponomarenko) were also able to develop new compounds with liquid-crystalline characteristics. The compounds (see image of molecular structure) contain exceptionally large dipole moments, a prerequisite for application as liquid crystals. This particular class of compounds could constitute a new form of liquid crystals. The dipole moment serves to improve their properties, which in turn could lead to increased brilliance in smartphone displays or faster circuit times in monitors and flat-screens.

Together with Prof. Berthold Hoge from University of Bielefeld the Jacobs researchers could show that phosphor(V) carbene complexes could be split neatly by hydrogen fluoride to chemical salts with a very low melting point (they are liquid at room temperature). They can be used widely spread as so-called ionic liquids. Being easily produced in just one step the new synthetic route is of great interest to chemical industry as reaction medium in organic syntheses.

Another way to synthesize carbene complexes Röschenthaler and Böttcher found in carbene transfer: an inexpensive, simple and highly versatile method. First a carbene complex is synthesized that is both stable and at the same time labile enough to transfer the carbene to the favored element. The scientists used NHC-SiCl4 as transfer reagent and transferred the carbene to PCl3 (Chemical Science, 2013, 4, 77-83, DOI: 10.1039/C2SC21214E). This is the first time a carbene has been transferred from one main group element to another. Furthermore, it is also possible to transfer carbenes to transition metals, which the scientists could show with nickel(II) and palladium(II)chloride. Carbene complexes of these metals often show good catalytic properties and thus are relevant for industry. A patent has been filed for this new manufacturing method as well: „Silicon-based Carbene Transfer Reagent“ (Jacobs University Bremen, DE 10 2012 102 535.5).

Contact:
Gerd-Volker Röschenthaler | Professor of Chemistry
E-mail: g.roeschenthaler@jacobs-university.de | Phone: +49 421 200-3138

Dr. Kristin Beck | idw
Further information:
http://www.jacobs-university.de

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>