Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IRCM researchers fuel an important debate in the field of molecular biology

27.01.2012
The discovery made by Dr. François Robert's team confirms the universality of an essential cellular process

Dr. François Robert, molecular biology researcher at the Institut de recherches cliniques de Montréal (IRCM), and his team confirmed that the phosphorylation of RNA polymerase II, a key enzyme in the process of gene expression, is uniform across all genes. This discovery, which contributes to numerous debates on the topic within the scientific community, will be published tomorrow in the scientific journal Molecular Cell.

Phosphorylation, or the addition of phosphate to a molecule, is one of the most important regulation mechanisms for cells. It allows, among other things, to control interactions between proteins.

"During transcription, the first step in gene expression, RNA polymerase II is abundantly phosphorylated," explains Dr. Robert, Director of the Chromatin and Genomic Expression research unit at the IRCM. "This allows for the coordination between transcription and the other steps in the process of gene expression."

By examining a small number of genes, certain pioneering studies that have been long-accepted in the field had shown that phosphorylation of RNA polymerase II always occurred in the same prescribed pattern during transcription. However, recent genome-wide analyses challenged this idea by suggesting that this process was not uniform across different genes. "The latter model is very controversial, because it is unclear how, or why, transcription could work in such radically different ways from one gene to the next," says Alain Bataille, doctoral student and first co-author of the study.

By using modern functional genomic tools, the team of researchers confirmed the former hypothesis that transcription operates in a uniform way across virtually all genes.

"The identity of enzymes responsible for adding and removing phosphate groups to RNA polymerase II is another controversial topic among scientists," adds Dr. Célia Jeronimo, postdoctoral fellow in Dr. Robert's laboratory and first co-author of the article. "Our research also allowed us to better understand the respective role of these essential enzymes."

"The results of our studies represent a major contribution to the scientific community in the understanding of different cellular processes within the field of molecular biology," concludes Dr. Robert.

The research project was funded by the Canadian Institutes of Health Research (CIHR). "CIHR is proud to have supported this study, which has settled an important fundamental question in genetic regulation," said Dr. Paul Lasko, Scientific Director of the Institute of Genetics. "I applaud Dr. Robert and his team on their discovery. As misregulation of transcription often underlies genetic disease and cancer, breakthroughs such as this provide critical insights that will one day lead to new treatments that will improve the health of Canadians." For more information on this discovery, please refer to the article summary published online by Molecular Cell: http://www.cell.com/molecular-cell/abstract/S1097-2765(11)00951-8.

About Dr. François Robert

François Robert obtained his PhD in molecular biology from the Université de Sherbrooke. He is Associate IRCM Research Professor, Director of the Systems Biology and Medicinal Chemistry research program, and Director of the Chromatin and Genomic Expression research unit. Dr. Robert is an associate researcher-professor in the Department of Medicine (accreditation in molecular biology) at the Université de Montréal. He is also adjunct professor in the Department of Biology at the Université de Sherbrooke.

About the Institut de recherches cliniques de Montréal (IRCM)

Founded in 1967, the IRCM (http://www.ircm.qc.ca) is currently comprised of 36 research units in various fields, namely immunity and viral infections, cardiovascular and metabolic diseases, cancer, neurobiology and development, systems biology and medicinal chemistry. It also houses three specialized research clinics, seven core facilities and three research platforms with state-of-the-art equipment. The IRCM employs 425 people and is an independent institution affiliated with the Université de Montréal. The IRCM clinic is associated to the Centre hospitalier de l'Université de Montréal (CHUM). The IRCM also maintains a long-standing association with McGill University.

Julie Langelier | EurekAlert!
Further information:
http://www.ircm.qc.ca

More articles from Life Sciences:

nachricht New mechanisms regulating neural stem cells
21.02.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht A landscape of mammalian development
21.02.2019 | Max-Planck-Institut für molekulare Genetik

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

A Volcanic Binge And Its Frosty Hangover

21.02.2019 | Earth Sciences

Cleaning 4.0 in the meat processing industry – higher cleaning efficiency

21.02.2019 | Trade Fair News

New mechanisms regulating neural stem cells

21.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>