Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IRCM researchers fuel an important debate in the field of molecular biology

27.01.2012
The discovery made by Dr. François Robert's team confirms the universality of an essential cellular process

Dr. François Robert, molecular biology researcher at the Institut de recherches cliniques de Montréal (IRCM), and his team confirmed that the phosphorylation of RNA polymerase II, a key enzyme in the process of gene expression, is uniform across all genes. This discovery, which contributes to numerous debates on the topic within the scientific community, will be published tomorrow in the scientific journal Molecular Cell.

Phosphorylation, or the addition of phosphate to a molecule, is one of the most important regulation mechanisms for cells. It allows, among other things, to control interactions between proteins.

"During transcription, the first step in gene expression, RNA polymerase II is abundantly phosphorylated," explains Dr. Robert, Director of the Chromatin and Genomic Expression research unit at the IRCM. "This allows for the coordination between transcription and the other steps in the process of gene expression."

By examining a small number of genes, certain pioneering studies that have been long-accepted in the field had shown that phosphorylation of RNA polymerase II always occurred in the same prescribed pattern during transcription. However, recent genome-wide analyses challenged this idea by suggesting that this process was not uniform across different genes. "The latter model is very controversial, because it is unclear how, or why, transcription could work in such radically different ways from one gene to the next," says Alain Bataille, doctoral student and first co-author of the study.

By using modern functional genomic tools, the team of researchers confirmed the former hypothesis that transcription operates in a uniform way across virtually all genes.

"The identity of enzymes responsible for adding and removing phosphate groups to RNA polymerase II is another controversial topic among scientists," adds Dr. Célia Jeronimo, postdoctoral fellow in Dr. Robert's laboratory and first co-author of the article. "Our research also allowed us to better understand the respective role of these essential enzymes."

"The results of our studies represent a major contribution to the scientific community in the understanding of different cellular processes within the field of molecular biology," concludes Dr. Robert.

The research project was funded by the Canadian Institutes of Health Research (CIHR). "CIHR is proud to have supported this study, which has settled an important fundamental question in genetic regulation," said Dr. Paul Lasko, Scientific Director of the Institute of Genetics. "I applaud Dr. Robert and his team on their discovery. As misregulation of transcription often underlies genetic disease and cancer, breakthroughs such as this provide critical insights that will one day lead to new treatments that will improve the health of Canadians." For more information on this discovery, please refer to the article summary published online by Molecular Cell: http://www.cell.com/molecular-cell/abstract/S1097-2765(11)00951-8.

About Dr. François Robert

François Robert obtained his PhD in molecular biology from the Université de Sherbrooke. He is Associate IRCM Research Professor, Director of the Systems Biology and Medicinal Chemistry research program, and Director of the Chromatin and Genomic Expression research unit. Dr. Robert is an associate researcher-professor in the Department of Medicine (accreditation in molecular biology) at the Université de Montréal. He is also adjunct professor in the Department of Biology at the Université de Sherbrooke.

About the Institut de recherches cliniques de Montréal (IRCM)

Founded in 1967, the IRCM (http://www.ircm.qc.ca) is currently comprised of 36 research units in various fields, namely immunity and viral infections, cardiovascular and metabolic diseases, cancer, neurobiology and development, systems biology and medicinal chemistry. It also houses three specialized research clinics, seven core facilities and three research platforms with state-of-the-art equipment. The IRCM employs 425 people and is an independent institution affiliated with the Université de Montréal. The IRCM clinic is associated to the Centre hospitalier de l'Université de Montréal (CHUM). The IRCM also maintains a long-standing association with McGill University.

Julie Langelier | EurekAlert!
Further information:
http://www.ircm.qc.ca

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

Im Focus: Dynamics of individual proteins

New measurement method allows researchers to precisely follow the movement of individual molecules over long periods of time

The function of proteins – the molecular tools of the cell – is governed by the interplay of their structure and dynamics. Advances in electron microscopy have...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

Major Project: The New Silk Road

01.10.2018 | Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

 
Latest News

Physics: Not everything is where it seems to be

15.10.2018 | Physics and Astronomy

Microfluidic molecular exchanger helps control therapeutic cell manufacturing

15.10.2018 | Life Sciences

Link between Gut Flora and Multiple Sclerosis Discovered

15.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>