Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

iPhone plus nanoscale porous silicon equals cheap, simple home diagnostics

11.06.2019

The simplest home medical tests might look like a deck of various silicon chips coated in special film, one that could detect drugs in the blood, another for proteins in the urine indicating infection, another for bacteria in water and the like. Add the bodily fluid you want to test, take a picture with your smart phone, and a special app lets you know if there's a problem or not.

That's what electrical engineer Sharon Weiss, Cornelius Vanderbilt Professor of Engineering at Vanderbilt University, and her students developed in her lab, combining their research on low-cost, nanostructured thin films with a device most American adults already own.


Silicon chips similar to the ones that would be used in the iPhone diagnostic system.

Credit: Heidi Hall/Vanderbilt University

"The novelty lies in the simplicity of the basic idea, and the only costly component is the smart phone," Weiss said.

"Most people are familiar with silicon as being the material inside your computer, but it has endless uses," she said. "With our nanoscale porous silicon, we've created these nanoscale holes that are a thousand times smaller than your hair. Those selectively capture molecules when pre-treated with the appropriate surface coating, darkening the silicon, which the app detects."

Similar technology being developed relies on expensive hardware that compliments the smart phone. Weiss' system uses the phone's flash as a light source, and the team plans to develop an app that could handle all data processing necessary to confirm that the film simply darkened with the adding of fluid.

What's more, in the future, such a phone could replace a mass spectrometry system that costs thousands of dollars. The Transportation Security Administration owns hundreds of those at airports across the country, where they're used to detect gunpowder on hand swabs.

Other home tests rely on a color change, which is a separate chemical reaction that introduces more room for error, Weiss said.

Weiss, Ph.D. student Tengfei Cao, and their team used a biotin-streptavidin protein assay and an iPhone SE, model A1662, to test their silicon films and found the accuracy to be similar to that of benchtop measurement systems. They also used a 3D printed box to stabilize the phone and get standardized measurements for the paper, but Weiss said that wouldn't be necessary if further research and development led to a commercialized version.

###

Their results will appear in a future edition of Analyst, one in the Royal Society of Chemistry family of journals. An early version is available online here.

This work was funded by Army Research Office grant W911NF-15-1-0176 and National Science Foundation grant DMR-1263182.

Heidi Nieland Hall | EurekAlert!
Further information:
http://dx.doi.org/10.1039/C9AN00022D

Further reports about: 3D chemical reaction color change data processing iPhone light source nanoscale porous

More articles from Life Sciences:

nachricht AI-driven single blood cell classification: New method to support physicians in leukemia diagnostics
13.11.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Small RNAs link immune system and brain cells
13.11.2019 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Magnetic tuning at the nanoscale

13.11.2019 | Physics and Astronomy

At future Mars landing spot, scientists spy mineral that could preserve signs of past life

13.11.2019 | Physics and Astronomy

Necessity is the mother of invention: Fraunhofer WKI tests utilization of low-value hardwood for wood fiberboard

13.11.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>