Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State, Ames Lab researcher hunts for green catalysts

08.03.2011
L. Keith Woo is searching for cleaner, greener chemical reactions.

Woo, an Iowa State University professor of chemistry and an associate of the U.S. Department of Energy's Ames Laboratory, has studied catalysts and the chemical reactions they affect for more than 25 years. And these days, his focus is on green catalysis.

That, he said, is the search for catalysts that lead to more efficient chemical reactions. That could mean they promote reactions at lower pressures and temperatures. Or it could mean they promote reactions that create less waste. Or it could mean finding safer, cleaner alternatives to toxic or hazardous conditions, such as using water in place of organic solvents.

"We're trying to design, discover and optimize materials that will produce chemical reactions in a way that the energy barrier is lowered," Woo said. "We're doing fundamental, basic catalytic work."

And much of that work is inspired by biology.

In one project, Woo and his research group are studying how iron porphyrins (the heme in the hemoglobin of red blood cells) can be used for various catalytic applications. Iron porphyrins are the active sites in a variety of the enzymes that create reactions and processes within a cell. Most of the iron porphyrin reactions involve oxidation and electron transfer reactions.

Because the iron porphyrins of biology have evolved into highly specialized catalysts, Woo and his research group are studying how they can be used synthetically with the goal of developing catalysts that influence a broader range of reactions.

"We've found porphyrins are capable of doing many reactions – often as well, or better, or cheaper than other catalysts," Woo said.

Another project is using combinatorial techniques to accelerate the development, production and optimization of catalysts. Woo and his research group are using molecular biology to quickly screen a massive library of DNA molecules for catalyst identification and development. The goal is to create water-soluble catalysts for organic reactions.

"Combinatorial approaches such as these have been applied to drug design, but their use in transition metal catalyst development is in its infancy," Woo wrote in a summary of the project.

A third project is looking for catalysts that allow greener production of lactams, which are compounds used in the production of solvents, nylons and other polymers. Commercial lactam production traditionally uses harsh reagents and conditions, such as sulfuric acid and high temperatures, and also creates significant wastes.

Woo, in collaboration with Robert Angelici, a Distinguished Professor Emeritus of Chemistry, has found a gold-based catalyst that eliminates the need for the acid and high pressure and also eliminates the wastes. The Iowa State Research Foundation Inc. is seeking a patent on the technology.

And, in a fourth project, Woo is working to understand the chemistry behind the chemical reactions that create bio-oil from the fast pyrolysis of biomass. Fast pyrolysis quickly heats biomass (such as corn stalks and leaves) in the absence of oxygen to produce a liquid bio-oil that can be used to manufacture fuels and chemicals.

Woo's projects are supported by grants from the National Science Foundation, the U.S. Department of Energy, Iowa State's Institute for Physical Research and Technology, Iowa State's Bioeconomy Institute, and the National Science Foundation Engineering Research Center for Biorenewable Chemicals based at Iowa State. Woo's research team includes post-doctoral researcher Wenya Lu and doctoral students B.J. Anding, Taiwo Dairo, Erik Klobukowski and Gina Roberts.

Sit down with Woo and he'll call up slide after slide of the chemical equations that describe chemical reactions.

And before long he's describing how catalysts are discovered these days.

"The traditional way to develop catalysts was very Edisonian – one experiment at a time," Woo said. "It was all by trial and error."

Now, with high-throughput approaches, Woo said his research group is able to quickly test a reaction using one hundred trillion different catalysts.

And that, Woo said, is "helping us find less expensive and more environmentally friendly materials and conditions to perform these catalytic reactions."

L. Keith Woo | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>