Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State, Ames Lab chemists aid study of mutated plants that may be better for biofuels

29.02.2012
Genetic mutations to cellulose in plants could improve the conversion of cellulosic biomass into biofuels, according to a research team that included two Iowa State University chemists.

The team recently published its findings in the online early edition of the Proceedings of the National Academy of Sciences. Mei Hong, an Iowa State professor of chemistry and an associate of the U.S. Department of Energy's Ames Laboratory, and Tuo Wang, an Iowa State graduate student in chemistry, contributed their expertise in solid-state nuclear magnetic resonance spectroscopy to the study.

The study was led by Seth DeBolt, an associate professor of horticulture at the University of Kentucky in Lexington. Chris Somerville, the Philomathia Professor of Alternative Energy and director of the Energy Biosciences Institute at the University of California, Berkeley, is also a contributing author. The research project was supported by grants from the National Science Foundation and the U.S. Department of Energy.

Researchers studied Arabidopsis thaliana, a common model plant in research studies, and its cellulose synthase membrane complex that produces the microfibrils of cellulose that surround all plant cells and form the basic structure of plant cell walls.

These ribbons of cellulose are made of crystallized sugars. The crystal structure makes it difficult for enzymes to break down the cellulose to the sugars that can be fermented into alcohol for biofuels. And so DeBolt assembled a research team to see if genetic mutations in the plant membrane complex could produce what the researchers have called "wounded" cellulose that's not as crystalline and therefore easier to break down into sugar.

Hong, who had done previous studies of plant cell walls, used her lab's solid-state nuclear magnetic resonance technology to study the cell walls created by the mutated system. The goals were to collect as much information as possible about the molecular structure of the cell walls to see if mutations to the plants resulted in changes to the cellulose.

"We found that the crystalline cellulose content had decreased in the mutant cell walls," Hong said. "We can quantify the degree of change, and be very specific about the type of change."

The cellulose microfibrils in the mutant cell walls, for example, were thinner than those found in normal plants, Hong said. The studies also found an additional type of cellulose with an intermediate degree of crystal structure.

Hong said those findings suggest the genetic mutations did create differences in cellulose production and formation.

The study also reports the cellulose produced by the mutated plant could be more efficiently processed into the sugars necessary for biofuel production.

"What this work suggests, in very broad terms, is that it is possible to modify cellulose structure by genetic methods, so that potentially one can more easily extract cellulose from plants as energy sources," Hong said.

The research team's paper said developing techniques to modify the structure of plant cellulose in crops for better and easier conversion to fermentable sugars "could be transformative in a bio-based economy."

Mei Hong | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Life Sciences:

nachricht Switch-in-a-cell electrifies life
18.12.2018 | Rice University

nachricht Plant biologists identify mechanism behind transition from insect to wind pollination
18.12.2018 | University of Toronto

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>