IOW discovers and cultivates two previously unknown unicellular species from the Baltic Sea

The two previously unknown species from the Baltic Sea appear to have adapted extremely well to the changing oxygen conditions of their native environment and have a cell structure that heretofore has not been observed in collared flagellates.

The funnel-shaped collar accounts for the scientific name of these protozoa, choanoflagellates (choano [Greek]: depression, funnel). They are among the protists and bacterial feeders that play a major role in the microbial food web. The collar consists of a series of filamentous cellular appendages, the microvilli. Protruding from the collar is a single flagellum, which these one-celled organisms use both to propel themselves and to swirl their bacterial food, which is then captured by the funnel and, via the microvilli, transported into the cell.

Cultivation — that is, the establishment of pure cultures under laboratory conditions — is extremely difficult and only rarely successful for these types of microorganisms. Consequently, only a small proportion of the existing marine microbial biodiversity is known. Previous research carried out by members of the IOW indicated that choanoflagellates in the oxygen-depleted areas of the central Baltic Sea are present in elevated concentrations. However, until now it has not been possible to obtain pure laboratory cultures of choanoflagellates isolated from marine low-oxygen environments (redox zones).

Exactly this feat was recently accomplished by IOW researchers with the support of Russian visiting scientists. The addition of Codosiga minima and Codosiga balthica, two previously completely unknown species of collared flagellates, further enriches the extensive culture collection of the IOW, which already includes representatives of a number of bacterial, flagellate, and ciliate species central to the Baltic Sea ecosystem. These two new members have been examined by electron microscopy and characterized in detail. Codosiga minima was so named because of its small size (about 3 microns) and it is probably one of the rarer species in the Baltic Sea. Its “big brother” (about 5 microns), however, is a common species that seems to preferentially reside in the Baltic Sea, hence the name Codosiga balthica.

Both species make use of the food sources of the low-oxygen redox zone and feed on its abundant supplies of bacteria and archaea. At the same time they enjoy a degree of protection from predators, since multicellular zooplankton (e.g., small crustaceans) rarely ventures into the low-oxygen layers. In order to take advantage of the living conditions of the redox zone, the two choanoflagellates — which evolved from oxygen-loving ancestors — have adapted in many ways to the lack of oxygen. Thus, the normally oxygen-dependent mitochondria — the energy-producing “power plants” of cells — have undergone an important change in that they can function with little or even no oxygen. This form of adaptation is absolutely unique among the collared flagellates as it has never been observed before in this group of organisms. Another surprise for the IOW researchers was that Codosiga balthica harbors intracellular bacteria. Thus, numerous bacterial cells live within each flagellated cell, where they presumably serve to support energy metabolism.

These two closely related species are now available for the first time as model organisms, which will allow experimental investigations of choanoflagellate metabolism under low-oxygen conditions. The results of such studies will no doubt help to clarify many of the as yet unanswered ecological, physiological, and evolutionary questions regarding collared flagellates.

The described work was supported by the German Research Foundation conducted. Further information on these results can be found in:

Wylezich,C., Karpov,S.A., Mylnikov,A.P., Anderson,R. and Jürgens,K. (2012) Ecologically relevant choanoflagellates collected from hypoxic water masses of the Baltic Sea have untypical mitochondrial cristae. BMC Microbiol. 12 (1), 271

Contact:

Dr. Claudia Wylezich, Biological Oceanography, IOW
(Tel.: 0381 / 5197 3434, Email: claudia.wylezich@io-warnemuende.de)
Dr. Barbara Hentzsch, Public Relation, IOW
(Tel.: 0381 / 5197 102, Email: barbara.hentzsch@io-warnemuende.de)
Nils Ehrenberg, Public Relation, IOW
(Tel.: 0381 / 5197 106, Email: nils.ehrenberg@io-warnemuende.de)
The IOW is a member of the Leibniz Association, which currently includes 86 research institutes and a scientific infrastructure for research. The Leibniz Institutes' fields range from the natural sciences, engineering and environmental sciences, business, social sciences and space sciences to the humanities. Federal and state governments together support the Institute. In total, the Leibniz Institute has 16 800 employees, of which approximately are 7,800 scientists, and of those 3300 young scientists. The total budget of the Institute is more than 1.4 billion Euros. Third-party funds amount to approximately € 330 million per year.

Media Contact

Dr. Barbara Hentzsch idw

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors