Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Investigators predict, confirm how E. coli bacteria hijack cells' directional mechanism

01.03.2012
Working in the emerging field of systems biology, UT Southwestern Medical Center researchers mathematically predicted how bacteria that cause food poisoning hijack a cell's sense of direction and then confirmed those predictions in living cells.

The study proposed a new model to explain how mammalian cells establish the sense of direction necessary to move, as well as the mechanism that a disease-causing form of E. coli bacteria employ to hijack that ability. Cells need to orient themselves for several basic processes, such as keeping biochemical reactions separated in space and, in the case of immune cells, pursuing pathogens. Importantly, disruption of the cell's sense of direction often leads to human disease.

"This is a great example of scientists from different fields of research coming together to solve a complex and important biological problem," said Dr. Neal Alto, assistant professor of microbiology and senior author of the study, published Feb. 17 in Cell.

Systems biology aims to discover and understand a "circuit theory" for biology – a set of powerful and predictive principles that will reveal how networks of biological components are wired to display the complex properties of living things. The rapidly emerging field requires experts in several scientific disciplines – including biology, physics, mathematics and computer science – to come together to create models of biological systems that consider both the individual parts and how these parts react to each other and to changes in their environment.

Scientists from UT Southwestern's microbiology department and the newly expanded Cecil H. and Ida Green Comprehensive Center for Molecular, Computational and Systems Biology teamed up to examine the problem collaboratively. They initially conceived a mathematical model for their hypothesis of how the cell would respond during an E. coli-induced infection and then tested their computational predictions in living cells.

"Bacteria inject protein molecules into human cells with a needle-and-syringe action," Dr. Alto said. "The human cell responds by producing a local actin-rich membrane protrusion at the spot where the bacteria attaches to the cell."

For healthy cells to move normally, these actin polymers push against a cell's membrane, protruding and propelling the cell in one direction or another. When E. coli molecules are injected, however, actin polymers rush to the site infection and help bacterial molecules both move within the cell and establish an internal site of infection.

Robert Orchard, graduate student of microbiology and the study's lead author, said: "By asking 'How does a bacterial pathogen from outside the cell regulate the host cells' actin dynamics within the cell?' we have uncovered a fundamentally new molecular circuit involved in mammalian cell polarity and bacterial infection. These findings provide new insight into the regulatory mechanisms that control both disease-causing agents and normal mammalian cell behavior."

Other UT Southwestern researchers from the Green Center involved in the work were Dr. Steven Altschuler and Dr. Lani Wu, both associate professors of pharmacology; Dr. Gürol Süel, assistant professor of pharmacology; and Mark Kittisopikul, a student in the Medical Scientist Training Program.

The National Institutes of Health, the James S. McDonnell Foundation and The Welch Foundation supported the study. The researchers also received assistance from the UT Southwestern Live Cell Imaging Facility, which is supported in part by the National Cancer Institute.

This news release is available on our World Wide Web home page at www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via email, subscribe at www.utsouthwestern.edu/receivenews

Deborah Wormser | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Switch-in-a-cell electrifies life
18.12.2018 | Rice University

nachricht Plant biologists identify mechanism behind transition from insect to wind pollination
18.12.2018 | University of Toronto

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>