Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Investigation of Prion Folding on Cell Membranes

11.08.2008
Abnormally folded proteins cause a number of illnesses such as the Creutzfeldt-Jacob Disease, BSE (bovine spongiform encephalopathy) and Alzheimer’s.

It is still unknown why this misfolding occurs. The first stages of folding and the onset of the aggregation of the proteins, the so-called oligomerisation, appear to be decisive for pathogenesis.

The Research teams of Prof. Klaus Gerwert and Prof. Detlev Riesner in Bochum and Düsseldorf have now been able to observe the proteins in their natural environment. They investigated the structural changes of the prion protein (PrP), the trigger for Creutzfeldt-Jacob Disease, by anchoring it to a cell membrane. As summarized by Prof. Gerwert, “Much to our surprise, the reaction of a membrane-anchored prion protein differs from that of a PrP in solution.

Unstructured parts of the protein fold in a manner that makes it easy for another prion protein to be adsorbed – the possible onset of the pathogenetic structure.” The results of this research work are available online in the current edition of the Proceedings of the National Academy of Science (PNAS).

Abnormal folding in replication

The prion protein is physiologically well-folded in a healthy organism, particularly within the central nervous system. If prion proteins refold, they can change into abnormally structured, infectious prion proteins. Insoluble deposits within the cells, so-called amyloid structures, which ultimately lead to the dissolution of the affected cells, gradually develop. Amyloid diseases are almost always fatal.

The binding of membranes changes the behaviour of the prions

Gerwert and Riesner are the first scientists who have been able to reproduce the situation in living cells by analyzing membrane-anchored prion proteins. They were surprised to discover that there is a difference between the behaviour of the membrane-anchored protein at the membrane and the un-bound membrane in solution, which had been the focal point of all biophysical research work to date.

The Nobel Prize Winner Kurt Wüthrich had also determined the three-dimensional structure of the prion protein on unanchored prion proteins. To cite Prof. Gerwert, “High concentrations of prion protein at the membrane result in unstructured parts of the prion protein folding in a manner that makes it easy for numerous prion proteins to be adsorbed.

So-called beta sheets, comparable with two corrugated iron sheets, develop, enabling easy and perfectly fitting anchorage of the proteins.” The folding thus appears to induce the oligomerisation and possibly also the pathogenetic structure. To date, the structure of fully glycosylated prion proteins at the membrane has not been described in research reports.

Infrared spectroscopy identifies the folding

This new information could be gained by interdisciplinary cooperation of the two research teams. The team from Düsseldorf has already presented many important reports on prion research in the past. The studies on the folding of the membranes were then performed in Bochum. A new method was introduced: the prion protein was anchored to a membrane that was placed on an ATR (attenuated total reflectance) crystal.

The folding was then analyzed by infrared spectroscopy. “If an infrared ray passes through the ATR crystal, part of the radiation penetrates into and is absorbed by the attached sample,” explained Prof. Gerwert. “The absorption is just as unique for a protein structure as a fingerprint is for a human being.” In the infrared spectrum, every protein structure creates its own pattern. Changes therein are direct signs of a folding procedure.

Prof. Dr. Klaus Gerwert | alfa
Further information:
http://www.bph.rub.de

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>