Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Investigation of bacteriophages in intensive care units

28.10.2019

Phages are a special form of virus that may prove effective as a new weapon against bacterial infections, especially in places where antibiotics fail due to multidrug resistance. The solution is not that easy, however. Phages not only infect bacteria; they may also develop a synergistic relationship with them, enabling the bacteria to persist for longer periods. Against this critical background, researchers from Vetmeduni Vienna and the private Karl Landsteiner University of Health Sciences have now published the world’s first study on the coexistence of phages and bacteria in intensive care units (ICUs).

It is general knowledge that, unfortunately, ICUs are critical locations for the transmission of dangerous microorganisms. What is less known is that bacteria may develop a synergistic relationship with a special form of virus called bacteriophages that allows the bacteria to develop new survival strategies.


Bacteriophages

© Dinhopl

Viruses and bacteria in the ICU

A research team led by Friederike Hilbert from the Department of Farm Animals and Veterinary Public Health at Vetmeduni Vienna and Cátia Pacífico from the private Karl Landsteiner University of Health Sciences have for the first time investigated the relationship between bacteriophages and bacteria in an intensive care unit.

The researchers isolated Staphylococcus aureus from the surroundings of all patients examined but failed to detect lytic phages of either Staphylococcus or Escherichia coli in any of the samples.

Despite the absence of lytic bacteriophages, two of the clinical isolates studied contained mitomycin C-inducible prophages. The study also highlights the problem of multidrug resistant bacteria in ICUs. Due to the use of virucidal disinfectants, phages were not viable in this study.

Friend or foe: bacteriophage viruses deserving of more attention

This study is particularly exciting because of the phages that were investigated. Not only can they prolong the persistence of bacteria, they can also kill them. Phages have therefore attracted interest as potential biocontrol agents, and bacteriophage-based products may be effective at eliminating or reducing the bacterial load in critical settings such as hospitals.

The phages isolated in this study, however, show that further investigation is necessary on the functional diversity and impact of bacteriophages as well as their association with the bacteria living in the same environment. The findings from such studies will help to understand phage ecology and critically assess phage applications in the future.

Study enabled by technological progress

The study was made possible by several recent advances, in particular the development of high-throughput sequencing technologies enabling the complete characterization of microbiomes – not only bacteria but also viruses. Moreover, the scientific community is increasingly turning its attention to how microorganisms interact with the environment and with one another. Unlike the present study, previous work on the bacterial colonization of ICUs had not considered the role of bacteriophages.

Phages: constant, but little-known human companions

Phages are the most abundant members of the human virome and are present in every community examined. Their wide distribution in the environment impacts both viral diversification and the bacterial host, shaping microbial communities towards an expanded functional diversity of the ecosystems.

So-called lytic phages kill their bacterial host cell, while temperate bacteriophages (or lysogenic phages) either integrate into the bacterial genome (forming a so-called prophage) or exist as a plasmid in the bacterial cytoplasm. The existence of prophages in the bacterial genome acts as a supplementary gene pool of horizontally transferred genes that confers higher fitness to the bacteria, for example thanks to the presence of virulence genes, antimicrobial resistance genes and/or survival factors.

Service:
The article “Characterization of Bacteria and Inducible Phages in an Intensive Care Unit” by Cátia Pacífico, Miriam Hilbert, Dmitrij Sofka, Nora Dinhopl, Ildiko-Julia Pap, Christoph Aspöck and Friederike Hilbert was published in the Journal of Clinical Medicine.
https://www.mdpi.com/2077-0383/8/9/1433

About the University of Veterinary Medicine, Vienna:
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. The Vetmeduni Vienna plays in the global top league: in 2019, it occupies the excellent place 5 in the world-wide Shanghai University veterinary in the subject "Veterinary Science". http://www.vetmeduni.ac.at

Wissenschaftliche Ansprechpartner:

Friederike Hilbert
Unit of Food Hygiene and Technology
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-3316
Friederike.Hilbert@vetmeduni.ac.at

Cátia Pacífico
Unit of Food Hygiene and Technology
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
1545365@students.vetmeduni.ac.at

Originalpublikation:

The article “Characterization of Bacteria and Inducible Phages in an Intensive Care Unit” by Cátia Pacífico, Miriam Hilbert, Dmitrij Sofka, Nora Dinhopl, Ildiko-Julia Pap, Christoph Aspöck and Friederike Hilbert was published in the Journal of Clinical Medicine. https://www.mdpi.com/2077-0383/8/9/1433

Weitere Informationen:

https://www.vetmeduni.ac.at/en/infoservice/press-releases/press-releases-2019/in...

Nina Grötschl | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Towards better anti-cancer drugs: New insights into CDK8, an important human oncogene
28.01.2020 | Universität Bayreuth

nachricht Unique centromere type discovered in the European dodder
28.01.2020 | Leibniz Institute of Plant Genetics and Crop Plant Research

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Towards better anti-cancer drugs: New insights into CDK8, an important human oncogene

28.01.2020 | Life Sciences

Rice lab turns trash into valuable graphene in a flash

28.01.2020 | Materials Sciences

AI can jump-start radiation therapy for cancer patients

28.01.2020 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>