Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Investigating the “underground” habitat of Listeria bacteria

29.09.2014

Listeria are extremely undemanding bacteria. In low amounts they are present almost everywhere, including soil and water.

In order to better understand how Listeria spread, a group of scientists from the Institute of Milk Hygiene at the University of Veterinary Medicine, Vienna collected soil and water samples throughout Austria. Their study revealed a higher detection of Listeria in soil and water samples during periods of flooding. The researchers also found antibiotic-resistant strains of Listeria in soil samples. The data were published in the journal Applied Environmental Microbiology.


The collected soil and water samples were analyzed in the laboratory for their identity.

Photo: Beatrix Stessl/Vetmeduni Vienna

The literature describes Listeria as ubiquitous bacteria with widespread occurrence. Yet they only become a problem for humans and animals when they contaminate food processing facilities, multiply, and enter the food chain in high concentrations. An infection with Listeria monocytogenes can even be fatal for humans or animals with weakened immune systems.

Listeria in soil or water are not dangerous

“Listeria in soil or water represent a relatively low risk to humans,” explains study director Beatrix Stessl. “The concentrations are too low. The aim of our study was to ascertain where Listeria occur and which species and genotypes were prevalent there.” Martin Wagner, head of the Institute of Milk Hygiene, adds: “This information can help us to better understand the mechanisms through which these bacteria are spread.”

Flooding favours Listeria contamination

Over a period from 2007 to 2009, first author Kristina Linke and her colleagues collected nearly 500 soil and 70 water samples from three Austrian regions: the eastern Alps, the Donauauen National Park adjacent to the river Danube, and Lake Neusiedl. The study regions involved natural, non-agricultural areas.

Of all samples, 30 percent were detected positive for Listeria. Of these, 6 percent were contaminated with Listeria monocytogenes, the only species that is potentially dangerous for both humans and animals. L. monocytogenes was detected especially near the rivers Schwarza and Danube. Particularly high rates of the bacteria in soil and water samples were registered in September 2007 during extensive flooding in the region.

In most regions, the researchers found only Listeria that are non-pathogenic to humans.
The species Listeria ivanovii, which is potentially dangerous for animals, was found mainly in mountainous regions where the bacteria are presumably excreted by wildlife species. The non-pathogenic Listeria seeligeri was most frequently isolated in the region around Lake Neusiedl, which is likely explained by the waterfowl population in this area.
No Listeria were isolated in high-altitude mountain regions. The researchers explain the greater contamination at lower altitudes with the proximity to farms, agricultural land and the urban environment.

Antibiotic-resistant Listeria in soil

Although Listeria that contaminate food are generally not considered to be resistant to antibiotics, Stessl and her team found several Listeria strains in soil samples which resisted treatment with antibiotics. The bacteria have developed resistance. Stessl sees the possible causes as follows: “A number of soil microorganisms, such as fungi, naturally produce antibiotics. Listeria which are constantly exposed to these substances in the soil probably develop resistance. We believe, however, that the development of particularly high-resistant strains of Listeria can be explained by the proximity to agricultural land and the urban environment.”

Service:

The article „Reservoirs of Listeria species in three environmental ecosystems”, by Kristina Linke, Irene Rückerl, Katharina Brugger, Renata Karpiskova, Julia Walland, Sonja Muri-Klinger, Alexander Tichy, Martin Wagner und Beatrix Stessl was published in the Journal Applied and Environmental Microbiology. doi: 10.1128/AEM.01018-14 http://aem.asm.org/content/80/18/5583.long

About the University of Veterinary Medicine, Vienna

The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Dr. Beatrix Stessl
Institute of Milk Hygiene, Milk Technology and Food Science
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-3502
< beatrix stessl@vetmeduni.ac.at>

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2014/...

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Lateral gene transfer enables chemical protection of beetles against antagonistic fungi
18.07.2018 | Johannes Gutenberg-Universität Mainz

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>