Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intestinal microbiota defend the host against pathogens

01.03.2019

Research team from the Kiel CRC 1182 examines the role of the intestinal microbiome in fighting infections, using the nematode model Caenorhabditis elegans

From single-celled organisms to humans, all animals and plants are colonised by microorganisms. As so-called host organisms, they accommodate a diverse community of symbiotic microorganisms, the microbiome, and together with them form the so-called metaorganism.


Dr Katja Dierking (in the background) and Kohar Kissoyan investigated the role of C. elegans’ natural microbiome in the defence against infections.

© Dr Sabrina Köhler


An agar plate demonstrates the inhibitory effect of Pseudomonas bacteria: The pathogen Bacillus thurigiensis cannot thrive next to them.

© Dr Sabrina Köhler

The interactions between host and microbes exert a significant influence on diverse functions and health of the host organism. Scientists from the Collaborative Research Centre (CRC) 1182 "Origin and Function of Metaorganisms” at Kiel University (CAU) are investigating these complex interactions, and attribute an important role in the defence against pathogens to the microbiota.

To do so, they use various experimental model organisms, i.e. living organisms which allow investigation of the interaction with their bacterial symbionts under laboratory conditions. A research team from the department of Evolutionary Ecology and Genetics at CAU has examined the function of the natural intestinal microbiome using the nematode (round worm) model Caenorhabditis elegans.

They discovered that the natural C. elegans microbiome plays an important role in the defence against infections, and that certain bacteria produce a compound with a clear antimicrobial effect. In future, the results of the Kiel scientists could help to better understand the functions of the intestinal microbiome as a whole, and in particular its effects on the colonisation of the digestive tract by pathogens. Their study was published today in the scientific journal Current Biology.

Direct and indirect protection against infection
The Kiel team laid the foundation for the current research results a few years ago, when it presented the first systematic analysis of the natural worm microbiome. This investigation led to a detailed knowledge of the composition and the dominant species of the intestinal microbiome of the worm.

At that time, the researchers hypothesised that the natural microbiome benefits host fitness, for example by protecting the host against pathogens. To gain a better understanding of the function of the worm microbiome, the researchers have now examined how individual bacteria from the former study affect the fitness of the host during pathogen infection. In doing so, they identified two distinct modes of action.

"On the one hand, we were able to determine a direct protective effect of certain bacteria against a pathogen," said Dr Katja Dierking, research associate in the department of Evolutionary Ecology and Genetics at CAU, and principle investigator in the CRC 1182.

"Microbiota bacteria of the genus Pseudomonas inhibit the growth of the nematode specific pathogen Bacillus thuringiensis, if you put them in direct contact with each other," continued Dierking. In addition, the study of other microbiota bacteria of the genus Pseudomonas revealed an indirect effect: although they do not inhibit the growth of the pathogen directly, they nevertheless protect the worm against its harmful effects, likely through indirect, host-mediated mechanisms.

The researchers found a total of six bacterial isolates in the natural microbiome which are involved in the defence against infections: two of them protect the worm directly against pathogens, and four of them indirectly.

How intestinal bacteria inhibit the growth of pathogens

Another special feature of the new Kiel study is that it not only describes the infection-inhibiting effect of individual bacteria of the worm’s microbiome, but was also able to identify an underlying molecular mechanism. Using genomic and biochemical analyses, the scientists from the Kiel CRC 1182 in collaboration with scientists from Goethe University Frankfurt were able to identify an antibacterial compound that is produced by the two Pseudomonas microbiota bacteria, which protect the worm by directly inhibiting pathogen growth.

"The Pseudomonas bacteria produce a so-called cyclic lipopeptide," explained Kohar Kissoyan, first author of the study and doctoral researcher in the Evolutionary Ecology and Genetics group. "This chemical compound exerts a direct inhibitory effect on the pathogen, and thereby suppresses its further growth," continued Kissoyan.

How can we utilise the new findings?
The new results of the Kiel team establish C. elegans, which is a standard model organism studied in numerous research laboratories throughout the world, as experimental system to explore the various functions of the natural intestinal microbiome.

Next, Dierking and her research team want to conduct a detailed investigation of the mechanism of action of the antibacterial compound identified in the worm’s intestinal microbiome. The goal of the CRC 1182 is to understand the interactions of the various bacteria of the microbiome with the host organism, but also with each other.

In the long-term, the Kiel researchers hope that the gained knowledge will help in the development of therapeutic strategies to treat diseases related to disturbances of the intestinal microbiome, e.g. through the targeted use of probiotics, i.e. specific beneficial bacterial cultures. Currently, the Kiel metaorganisms CRC, which started in 2016, is applying for a second funding period as of 2020 at the German Research Foundation (DFG).

Photos are available to download:
https://www.uni-kiel.de/fileadmin/user_upload/pressemitteilungen/2019/058-dierki...
An agar plate demonstrates the inhibitory effect of Pseudomonas bacteria: The pathogen Bacillus thurigiensis cannot thrive next to them.
© Dr Sabrina Köhler

https://www.uni-kiel.de/fileadmin/user_upload/pressemitteilungen/2019/058-dierki...
Dr Katja Dierking (in the background) and Kohar Kissoyan investigated the role of C. elegans’ natural microbiome in the defence against infections.
© Dr Sabrina Köhler

More information:
Department of Evolutionary Ecology and Genetics, Zoological Institute, Kiel University:
http://www.uni-kiel.de/zoologie/evoecogen

Collaborative Research Centre (CRC) 1182 "Origin and Function of Metaorganisms", Kiel University:
http://www.metaorganism-research.com

Kiel University (CAU)
Press, Communication and Marketing, Dr Boris Pawlowski, Text: Christian Urban
Postal address: D-24098 Kiel, Germany, Telephone: +49 (0)431 880-2104, Fax: +49 (0)431 880-1355 E-mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de , Twitter: www.twitter.com/kieluni
Facebook: www.facebook.com/kieluni, Instagram: www.instagram.com/kieluni

Wissenschaftliche Ansprechpartner:

Dr Katja Dierking
Evolutionary Ecology and Genetics group, Kiel University
Tel.: +49 (0)431-880-4145
E-mail: kdierking@zoologie.uni-kiel.de

Originalpublikation:

Kohar Kissoyan, Moritz Drechsler, Eva-Lena Stange, Johannes Zimmermann, Christoph Kaleta, Helge Bode and Katja Dierking (2019): Natural C. elegans microbiota protects against infection via production of a cyclic lipopeptide of the viscosin group Current Biology Published on February 28, 2019
https://doi.org/10.1016/j.cub.2019.01.050

Weitere Informationen:

http://www.uni-kiel.de/zoologie/evoecogen
http://www.metaorganism-research.com

Christian Urban | Christian-Albrechts-Universität zu Kiel

More articles from Life Sciences:

nachricht Scientists crack structure of a novel enzyme linked to cell growth and cancer
06.11.2019 | University of California - Riverside

nachricht SMART discovers breakthrough way to look at the surface of nanoparticles
06.11.2019 | Singapore-MIT Alliance for Research and Technology (SMART)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

Im Focus: Shedding new light on the charging of lithium-ion batteries

Exposing cathodes to light decreases charge time by a factor of two in lithium-ion batteries.

Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory have reported a new mechanism to speed up the charging of lithium-ion...

Im Focus: Visible light and nanoparticle catalysts produce desirable bioactive molecules

Simple photochemical method takes advantage of quantum mechanics

Northwestern University chemists have used visible light and extremely tiny nanoparticles to quickly and simply make molecules that are of the same class as...

Im Focus: An amazingly simple recipe for nanometer-sized corundum

Almost everyone uses nanometer-sized alumina these days - this mineral, among others, constitutes the skeleton of modern catalytic converters in cars. Until now, the practical production of nanocorundum with a sufficiently high porosity has not been possible. The situation has changed radically with the presentation of a new method of nanocorundum production, developed as part of a German-Polish cooperation of scientists from Mülheim an der Ruhr and Cracow.

High temperatures and pressures, processes lasting for even dozens of days. Current methods of producing nanometer-sized alumina, a material of significant...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Scientists crack structure of a novel enzyme linked to cell growth and cancer

06.11.2019 | Life Sciences

HKU astronomy research team unveils one origin of globular clusters around giant galaxies

06.11.2019 | Physics and Astronomy

SMART discovers breakthrough way to look at the surface of nanoparticles

06.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>