Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Intestinal bacteria in type 2 diabetes: being overweight is pivotal


Publication in Cell Host&Microbe: A Kiel-based research team has been able to show that changes in the composition of intestinal bacteria in those with type 2 diabetes is linked more to being overweight and taking supplements or medication, and less to diabetes itself.

Those who are overweight also have a significantly increased risk of developing type 2 diabetes. In fact, 86% of all patients with this type of diabetes are overweight or obese. In both of these metabolic diseases, genetic predisposition, lifestyle e.g. diet and exercise, but also the composition of the intestinal bacteria, all play a role.

The DNA of the intestinal bacteria is extracted from stool samples. Based on the DNA, the scientists from the IKMB at Kiel University analyze the composition of the intestinal microbiome.

Photo/Copyright: C. Bang / Kiel University

The DNA of the intestinal bacteria is analyzed using modern sequencing devices.

Photo/Copyright: C. Urban / Kiel University.

Because the bacteria in the gut, the so-called intestinal microbiome, help humans digest food and therefore have a direct influence on the metabolism.

In people with obesity, the diversity of the intestinal bacteria is greatly reduced compared to normal people. In particular, "good" intestinal bacteria, which fulfil functions for a healthy metabolism, are reduced. The same applies to overweight people with type 2 diabetes.

Scientists from the Institute of Clinical Molecular Biology (IKMB) at Kiel University’s (CAU) Faculty of Medicine are researching the interrelationships between genetics, nutrition and the microbiome.

An IKMB research team, together with international colleagues, has now published work in the renowned scientific journal Cell Host & Microbe proving changes in the microbiome related to obesity, and only minimal differences specific to type 2 diabetes.

“Since type 2 diabetes usually occurs together with being overweight, it is difficult to distinguish which changes in the intestinal bacteria are specifically only from type 2 diabetes, and which are from obesity," explained Professor Andre Franke, Director at the IKMB and board member of the Cluster of Excellence "Precision Medicine in Chronic Inflammation" (PMI), regarding the initial situation. In close collaboration with Professor Curtis Huttenhower from the Harvard T.H. Chan School of Public Health in Boston, the team led by Franke therefore specifically tackled this issue.

Intestinal microbiome changes with obesity and use of medication

To do so, they examined the intestinal microbiome of 1,280 stool samples. These came from so-called cohort studies, in which biological samples such as urine and blood, as well as information about lifestyle, diseases and use of medication, were regularly collected from numerous subjects over lengthy time periods. For the current research, the team led by Franke specifically selected subjects from three groups: people of normal weight, overweight people and overweight people with type 2 diabetes.

The investigations showed that the microbiome is changed significantly in overweight individuals - both with and without type 2 diabetes - compared to those of normal weight. The difference between obese people with and without type 2 diabetes was relatively low. "The significant reduction previously observed in the biodiversity of the intestinal bacteria in these people thus especially relates to obesity, and less to type 2 diabetes," explained the Danish lead author of the publication, Louise Thingholm from the IKMB in Kiel.

In addition, the team used the cohorts to help examine the impact of regularly taking medication and nutritional supplements on the intestinal microbiome. Their finding: not only medications which lower blood pressure, painkillers, antidepressants and antidiabetic agents, but also food supplements such as magnesium, vitamins, calcium and especially iron, all alter the intestinal microbiome noticeably. "Such substances, which many people hope will provide a health-boosting effect, change our intestinal bacteria. In this way, they also affect how we digest our food, and could possibly also play a role in metabolic diseases," said Franke.

Specific intestinal bacteria occur more frequently with type 2 diabetes

Thus, both obesity as well as potential use of medication affect the intestinal bacteria of patients with type 2 diabetes. Using bioinformatic methods, the research team adjusted for this influence on the microbiome changes in people with type 2 diabetes. This allowed them to search for individual species of bacteria, which specifically occur more frequently in type 2 diabetics.

"If we understand more clearly what these changes in the microbiome specifically cause, and which the key bacteria here are, then we can attack them in a targeted manner in the future, and therefore influence the related illness - or perhaps also its pathogenesis," explained Franke. "We are currently trying to obtain further funding, so that we can specifically look for therapeutic approaches to metabolic diseases in the microbiome, in an independent research project. The microbiome is especially interesting because we can influence it much more easily than our own genetic material, for example."

Photos are available to download:
The DNA of the intestinal bacteria is extracted from stool samples. Based on the DNA, the scientists from the Institute of Clinical Molecular Biology (IKMB) at Kiel University (CAU) analyze the composition of the intestinal microbiome.
Photo/Copyright: C. Bang / Kiel University
An employee at the Institute of Clinical Molecular Biology (IKMB) at Kiel University (CAU) prepares the stool samples. The DNA of the intestinal bacteria is extracted from these samples in order to determine the composition of the intestinal microbiome.
Photo/Copyright: C. Bang / Kiel University.
The DNA of the intestinal bacteria is analyzed using modern sequencing devices.
Photo/Copyright: C. Urban / Kiel University.
Professor Andre Franke, Director of the Institute of Clinical Molecular Biology (IKMB) and board member of the Cluster of Excellence "Precision Medicine in Chronic Inflammation" (PMI).
Photo/Copyright: K. Nees / Kiel University.

Press contact:
Frederike Buhse
Tel.: +49 (0)431 880 4682 e-mail:

The Cluster of Excellence "Precision Medicine in Chronic Inflammation" (PMI) is being funded from 2019 to 2025 through the German Excellence Strategy (ExStra). It succeeds the "Inflammation at Interfaces” Cluster, which was already funded in two periods of the Excellence Initiative (2007-2018). Around 300 members from eight institutions at four locations are involved: Kiel (Kiel University, University Medical Center Schleswig-Holstein (UKSH), Muthesius University of Fine Arts and Design, Kiel Institute for the World Economy (IfW), Leibniz Institute for Science and Mathematics Education (IPN)), Lübeck (University of Lübeck, University Medical Center Schleswig-Holstein (UKSH)), Plön (Max Planck Institute for Evolutionary Biology) and Borstel (Research Center Borstel - Leibniz Lung Center).

The goal is to translate interdisciplinary research findings on chronic inflammatory diseases of barrier organs to healthcare more intensively, as well as to fulfil previously unsatisfied needs of the patients. Three points are important in the context of successful treatment, and are therefore at the heart of PMI research: the early detection of chronic inflammatory diseases, the prediction of disease progression and complications, and the prediction of individual responses to treatment.

Cluster of Excellence "Precision Medicine in Chronic Inflammation"
Scientific Office, Head: Dr habil. Susanne Holstein
Postal address: Christian-Albrechts-Platz 4, 24118 Kiel, Germany
Contact: Sonja Petermann
Tel.: +49 431 880-4850, Fax: +49 (0)431 880-4894
Twitter: PMI @medinflame

Wissenschaftliche Ansprechpartner:

Prof. Andre Franke
Institute of Clinical Molecular Biology (IKMB), Kiel University
Tel.: +49 (0)431 500 15110


Thingholm et al., Obese Individuals with and without Type 2 Diabetes Show Different Gut Microbial Functional Capacity and Composition, Cell Host & Microbe (2019),

Frederike Buhse | idw - Informationsdienst Wissenschaft
Further information:

More articles from Life Sciences:

nachricht Too much of a good thing: overactive immune cells trigger inflammation
16.09.2019 | Universität Basel

nachricht The sleep neuron in threadworms is also a stop neuron
16.09.2019 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

Latest News

Too much of a good thing: overactive immune cells trigger inflammation

16.09.2019 | Life Sciences

Scientists create a nanomaterial that is both twisted and untwisted at the same time

16.09.2019 | Materials Sciences

Researchers have identified areas of the retina that change in mild Alzheimer's disease

16.09.2019 | Health and Medicine

Science & Research
Overview of more VideoLinks >>>