Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International team uncovers new genes that shape brain size, intelligence

16.04.2012
UCLA-launched partnership identifies genes that boost or lessen risk of brain atrophy, mental illness and Alzheimer’s disease

In the world's largest brain study to date, a team of more than 200 scientists from 100 institutions worldwide collaborated to map the human genes that boost or sabotage the brain's resistance to a variety of mental illnesses and Alzheimer's disease. Published April 15 in the advance online edition of Nature Genetics, the study also uncovers new genes that may explain individual differences in brain size and intelligence.

"We searched for two things in this study," said senior author Paul Thompson, professor of neurology at the David Geffen School of Medicine at UCLA and a member of the UCLA Laboratory of Neuro Imaging. "We hunted for genes that increase your risk for a single disease that your children can inherit. We also looked for factors that cause tissue atrophy and reduce brain size, which is a biological marker for hereditary disorders like schizophrenia, bipolar disorder, depression, Alzheimer's disease and dementia."

Three years ago, Thompson's lab partnered with geneticists Nick Martin and Margaret Wright at the Queensland Institute for Medical Research in Brisbane, Australia; and with geneticist Barbara Franke of Radboud University Nijmegen Medical Centre in the Netherlands. The four investigators recruited brain-imaging labs around the world to pool their brain scans and genomic data, and Project ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) was born.

"Our individual centers couldn't review enough brain scans to obtain definitive results," said Thompson, who is also a professor of psychiatry at the Semel Institute for Neuroscience and Human Behavior at UCLA. "By sharing our data with Project ENIGMA, we created a sample large enough to reveal clear patterns in genetic variation and show how these changes physically alter the brain."

In the past, neuroscientists screened the genomes of people suffering from a specific brain disease and combed their DNA to uncover a common variant. In this study, Project ENIGMA researchers measured the size of the brain and its memory centers in thousands of MRI images from 21,151 healthy people while simultaneously screening their DNA.

"Earlier studies have uncovered risk genes for common diseases, yet it's not always understood how these genes affect the brain," explained Thompson. "This led our team to screen brain scans worldwide for genes that directly harm or protect the brain."

In poring over the data, Project ENIGMA researchers explored whether any genetic variations correlated to brain size. In particular, the scientists looked for gene variants that deplete brain tissue beyond normal in a healthy person. The sheer scale of the project allowed the team to unearth new genetic variants in people who have bigger brains as well as differences in regions critical to learning and memory.

When the scientists zeroed in on the DNA of people whose images showed smaller brains, they found a consistent relationship between subtle shifts in the genetic code and diminished memory centers. Furthermore, the same genes affected the brain in the same ways in people across diverse populations from Australia, North America and Europe, suggesting new molecular targets for drug development.

"Millions of people carry variations in their DNA that help boost or lower their brains' susceptibility to a vast range of diseases," said Thompson. "Once we identify the gene, we can target it with a drug to reduce the risk of disease. People also can take preventive steps through exercise, diet and mental stimulation to erase the effects of a bad gene."

In an intriguing twist, Project ENIGMA investigators also discovered genes that explain individual differences in intelligence. They found that a variant in a gene called HMGA2 affected brain size as well as a person's intelligence.

DNA is comprised of four bases: A, C, T and G. People whose HMGA2 gene held a letter "C" instead of "T" on that location of the gene possessed larger brains and scored more highly on standardized IQ tests.

"This is a really exciting discovery: that a single letter change leads to a bigger brain," said Thompson. "We found fairly unequivocal proof supporting a genetic link to brain function and intelligence. For the first time, we have watertight evidence of how these genes affect the brain. This supplies us with new leads on how to mediate their impact."

Because disorders like Alzheimer's, autism and schizophrenia disrupt the brain's circuitry, Project ENIGMA will next search for genes that influence how the brain is wired. Thompson and his colleagues will use diffusion imaging, a new type of brain scan that maps the communication pathways between cells in the living brain.

Project ENIGMA received funding from hundreds of federal and private agencies around the world. Thompson's UCLA coauthors included first author Jason Stein, Derrek Hibar, Rudy Senstad, Neda Jahanshad, Arthur Toga, Rita Cantor, Dr. Nelson Freimer, Roel Ophoff, Kristy Hwang, Dr. Liana Apostolova and Dr. Giovanni Coppola.

The UCLA Department of Neurology encompasses more than a dozen research, clinical and teaching programs. These programs cover brain mapping and neuroimaging, movement disorders, Alzheimer's disease, multiple sclerosis, neurogenetics, nerve and muscle disorders, epilepsy, neuro-oncology, neurotology, neuropsychology, headaches and migraines, neurorehabilitation and neurovascular disorders. The department ranks No. 1 among its peers nationwide in National Institutes of Health funding.

Elaine Schmidt | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Behavior-influencing policies are critical for mass market success of low carbon vehicles

17.07.2018 | Power and Electrical Engineering

Plant mothers talk to their embryos via the hormone auxin

17.07.2018 | Life Sciences

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>