Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International Team Collaborates on Sequence Data for German E. Coli Outbreak

08.07.2011
Pacific Biosciences of California, Inc. (NASDAQ: PACB) announced that it has completed a de novo sequence assembly of the Escherichia coli O104:H4 strain responsible for the recent outbreak in Germany using its Single Molecule Real Time (SMRT™) technology, and sequenced 11 related bacterial strains (including six previously unsequenced strains of the same serotype) for comparative analyses.

An international team of scientific experts on E. coli collaborated on the rapid sequencing project to provide more comprehensive information about the origins of the strain that gave rise to the deadly outbreak. The data were generated using an early version of chemistry and software in development at Pacific Biosciences for the next major PacBio RS product upgrade, planned for the fourth quarter of 2011.

The data provided to the public domain includes a complete assembly of the German outbreak strain, alignment to assemblies from other outbreak isolates, and sequences for 11 related Enteroaggregative E. coli strains. The project demonstrates the ability to produce a PacBio-only de novo assembly for a complex microbial pathogen, and the power of rapid sequencing of multiple genomes with the PacBio RS to elucidate the evolutionary history of a pathogenic microbe. A summary of the project appears on the company’s website at http://blog.pacificbiosciences.com.

The Pacific Biosciences scientific team, led by Chief Scientific Officer Eric Schadt, Ph.D., is collaborating with some of the world’s leading experts on E. coli and infectious diseases for this project. The collaborators include:

In Europe:
• Karen Angeliki Krogfelt, Ph.D., Professor, Head of Unit, Gastrointestinal Infections, Statens Serum Institut (SSI), Denmark
• Flemming Scheutz, Ph.D., Head of the WHO Collaborating Centre for Reference and Research on Escherichia and Klebsiella, SSI, Denmark
In the U.S.:
• James P. Nataro, M.D., Ph.D., Professor and Chair, Pediatrics, University of Virginia School of Medicine
• David A. Rasko, Ph.D., Assistant Professor, University of Maryland School of Medicine, Institute for Genome Sciences and Department of Microbiology and Immunology
• Nadia Boisen, Ph.D., Research Scientist, Department of Pediatrics, University of Virginia School of Medicine

• Matthew K. Waldor, M.D., Ph.D., Professor of Medicine at Harvard Medical School, Brigham and Women’s Hospital, and HMMI

“Using samples provided by our collaborators, we rapidly sequenced each strain using a standard PacBio RS protocol that took on average less than eight hours from sample preparation to sequencing results,” said Dr. Schadt. “The ability to sequence the outbreak strain with reads averaging 2,900 base pairs and our longest reads at over 7,800 bases, combined with our circular consensus sequencing to achieve high single molecule accuracy with a mode accuracy distribution of 99.9%, enabled us to complete a PacBio-only assembly without having to construct specialized fosmid libraries, perform PCR off the ends of contigs, or other such techniques that are required to get to similar assemblies with second generation DNA sequencing technologies.”

Dr. Krogfelt commented: “These high quality data will provide scientists with more information about the genomic features of this strain that could provide new markers for predicting the higher degree of pathogenicity we are seeing with this outbreak. A more comprehensive evolutionary view of this pathogen may also help identify markers for antibiotic drug resistance that could be used in the future should other related strains emerge. The complexity of this case proves that international collaborations and communications are important in the achievement of detailed scientific information.”

The data are available for the bioinformatics community at the PacBio developer’s network (DevNet) web site (www.pacbiodevnet.com), where a suite of open source tools and other resources designed for SMRT sequence data are available to analyze the information. The data have also been submitted to the National Center for Biotechnology Information (NCBI) SRA database.

Sarah Pick | Newswise Science News
Further information:
http://www.umaryland.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Upcycling of PET Bottles: New Ideas for Resource Cycles in Germany

25.06.2018 | Ecology, The Environment and Conservation

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>