Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International Study: Excess Dietary Salt May Drive the Development of Autoimmune Diseases

07.03.2013
Increased dietary salt intake can induce a group of aggressive immune cells that are involved in triggering and sustaining autoimmune diseases. This is the result of an international study conducted by researchers in the USA and Germany. (Nature, doi: http://dx.doi.org/10.1038/nature11868)*. In autoimmune diseases, the immune system attacks healthy tissue instead of fighting pathogens.
Researchers involved in this study were Dr. Markus Kleinewietfeld, Prof. David Hafler (both Yale University, New Haven and the Broad Institute of the Massachusetts Institute of Technology, MIT, and Harvard University, USA), PD Dr. Ralf Linker (Dept. of Neurology, University Hospital Erlangen), Professor Jens Titze (Vanderbilt University and Friedrich-Alexander-Universität Erlangen-Nürnberg, FAU, University of Erlangen-Nuremberg) and Professor Dominik N. Müller (Experimental and Clinical Research Center, ECRC, a joint cooperation between the Max-Delbrück Center for Molecular Medicine, MDC, Berlin, and the Charité – Universitätsmedizin Berlin and FAU).

In recent decades scientists have observed a steady rise in the incidence of autoimmune diseases in the Western world. Since this increase cannot be explained solely by genetic factors, researchers hypothesize that the sharp increase in these diseases is linked to environmental factors. Among the suspected culprits are changes in lifestyle and dietary habits in developed countries, where highly processed food and fast food are often on the daily menu. These foods tend to have substantially higher salt content than home-cooked meals. This study is the first to indicate that excess salt intake may be one of the environmental factors driving the increased incidence of autoimmune diseases.

Excess Dietary Salt May Drive the Development of Autoimmune Diseases.

(Photo: David Ausserhofer/ Copyright: MDC)

A few years ago Jens Titze showed that excess dietary salt (sodium chloride) accumulates in tissue and can affect macrophages (a type of scavenger cells) of the immune system. Independent of this study, Markus Kleinewietfeld and David Hafler observed changes in CD4 positive T helper cells (Th) in humans, which were associated with specific dietary habits. The question arose whether salt might drive these changes and thus can also have an impact on other immune cells. Helper T cells are alerted of imminent danger by the cytokines of other cells of the immune system. They activate and “help” other effector cells to fight dangerous pathogens and to clear infections. A specific subset of T helper cells produces the cytokine interleukin 17 and is therefore called Th17 for short. Evidence is mounting that Th17 cells, apart from fighting infections, play a pivotal role in the pathogenesis of autoimmune diseases.

Salt dramatically boosts the induction of aggressive Th17 immune cells
In cell culture experiments the researchers showed that increased sodium chloride can lead to a dramatic induction of Th17 cells in a specific cytokine milieu. “In the presence of elevated salt concentrations this increase can be ten times higher than under usual conditions,” Markus Kleinewietfeld and Dominik Müller explained. Under the new high salt conditions, the cells undergo further changes in their cytokine profile, resulting in particularly aggressive Th17 cells.

In mice, increased dietary salt intake resulted in a more severe form of experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Multiple sclerosis is an autoimmune disease of the central nervous system in which the body’s own immune system destroys the insulating myelin sheath around the axons of neurons and thus prevents the transduction of signals, which can lead to a variety of neurological deficits and permanent disability. Recently, researchers postulated that autoreactive Th17 cells play a pivotal role in the pathogenesis of multiple sclerosis.

Interestingly, according to the researchers, the number of pro-inflammatory Th17 cells in the nervous system of the mice increased dramatically under a high salt diet. The researchers showed that the high salt diet accelerated the development of helper T cells into pathogenic Th17 cells. The researchers also conducted a closer examination of these effects in cell culture experiments and showed that the increased induction of aggressive Th17 cells is regulated by salt on the molecular level. “These findings are an important contribution to the understanding of multiple sclerosis and may offer new targets for a better treatment of the disease, for which at present there is no known cure,” said Ralf Linker, who as head of the Neuroimmunology Section and Attending Physician at the Department of Neurology, University Hospital Erlangen, seeks to utilize new laboratory findings for the benefit of patients.

Besides multiple sclerosis, Dominik Müller and his colleagues want to study psoriasis, another autoimmune disease with strong Th17 components. The skin, as Jens Titze recently discovered, also plays a key role in salt storage and affects the immune system. “It would be interesting to find out if patients with psoriasis can alleviate their symptoms by reducing their salt intake,” the researchers said. “However, the development of autoimmune diseases is a very complex process which depends on many genetic and environmental factors,” the immunologist Markus Kleinewietfeld said. “Therefore, only further studies under less extreme conditions can show the extent to which increased salt intake actually contributes to the development of autoimmune diseases.”

*Sodium Chloride Drives Autoimmune Disease by the Induction of Pathogenic Th17 Cells

Markus Kleinewietfeld1, 2*, Arndt Manzel3, 4, Jens Titze5, 6, Heda Kvakan7, 8, Nir Yosef2, Ralf A. Linker3, Dominik N. Muller7,9+, David A. Hafler1, 2*+

1Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, United States, 2Broad Institute of MIT and Harvard, Cambridge, MA, United States, 3Department of Neurology University of Erlangen-Nuremberg, Germany, 4International Graduate School for Neuroscience, Ruhr-University Bochum, Germany, 5Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN, United States. 6Interdisciplinary Center for Clinical Research and Department for Nephrology and Hypertension, University of Erlangen-Nuremberg, Germany. 7Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine Berlin, Germany, 8Helios Klinikum Berlin-Buch, Germany, 9Nikolaus-Fiebiger-Center for Molecular Medicine, University Erlangen-Nuremberg, Germany
* corresponding authors
+these authors contributed equally to the work

Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96;
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de
http://www.mdc-berlin.de/

PD Dr. Ralf Linker
Neuroimmunology Section
Department of Neurology
University Hospital Erlangen
Schwabachanlage 6
D-91054 Erlangen
Phone: +49 (0)9131 - 85-32187
Fax: +49 (0)9131 - 85-36597
e-mail: Ralf.Linker@uk-erlangen.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

NASA keeps watch over space explosions

16.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>