Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International consortium, including Hebrew University scientist, ‘decodes’ the tomato genome

31.05.2012
The tomato genome sequence – both the domesticated type and its wild ancestor, Solanum pimpinellifolium -- has been sequenced for the first time by a large international team of scientists, including a researcher from the Hebrew University of Jerusalem.

The achievement – an important tool for further development of better tomato production -- by the 300-plus-memberTomato Genome Consortium (TGC) is reported on in the May 31 issue of the journal Nature.

The consortium includes Prof. Dani Zamir of the Robert H. Smith Faculty of Agriculture, Food and Environment of the Hebrew University. Other scientists in the project are from Argentina, Belgium, China, France, Germany, India, Italy, Japan, South Korea, Spain, the Netherlands, the United Kingdom and the United States.

When Columbus brought tomato seed from America to the old world some 500 years ago, he probably never imagined that it would be such a major contributor to human nutrition, health, culinary pleasure and international cooperation.

This latest quantum leap in knowledge of the tomato genetic code (35,000 genes) provides a means to match DNA sequences with specific traits that are important for human well being or taste, such as flavor, aroma, color and yield.

Beyond improvement of the tomato, the genome sequence also provides a framework for studying closely related plants, such as potato, pepper, petunia and even coffee. These species all have very similar sets of genes, yet they look very different.

How can a similar set of “genetic blueprints” empower diverse plants with different adaptations, characteristics and economic products? This challenging question is being explored by comparing biodiversity and traits of tomato and its relatives.

The Tomato Genome Consortium started its work in 2003, when scientists analyzed the DNA sequence of tomato using the most modern equipment available at the time. Fortunately, with the recent introduction of so-called “next generation sequencing” technologies, the speed of data output increased 500-fold and enabled the project to move on efficiently to its conclusion.

CONTACT:

Jerry Barach, Hebrew University Foreign Press Liaison
02-5882904 (international: 972-2-5882904)
jerryb@savion.huji.ac.il
Orit Sulitzeanu, Hebrew University Spokesperson
02-5882910, mobile: 054-882-0016
orits@savion.huji.ac.il

Jerry Barach | Hebrew University
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht Protein linked to cancer acts as a viscous glue in cell division
08.07.2020 | Rensselaer Polytechnic Institute

nachricht Enzymes as double agents: new mechanism discovered in protein modification
08.07.2020 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

On-chip spin-Hall nanograting for simultaneously detecting phase and polarization singularities

08.07.2020 | Physics and Astronomy

Engineers use electricity to clean up toxic water

08.07.2020 | Agricultural and Forestry Science

Atomic 'Swiss army knife' precisely measures materials for quantum computers

08.07.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>