Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interfacial engineering core@shell nanoparticles for active and selective direct H2O2 generation

19.09.2018

Hydrogen peroxide (H2O2) is a versatile chemical in modern industry, widely applied in many different fields. To date, H2O2 is industrially manufactured by an indirect process that involves the sequential hydrogenation and oxidation of alkyl anthraquinone, which is however a multi-step process with high-cost and energy-intensive. On the sharp contrary, the direct synthesis of H2O2 from H2 and O2 is expected to be the most efficient way to produce H2O2 due to the remarkable advantages of atom economy, low energy consumption and only by-product of H2O.

Hitherto, the direct synthetic route is mainly achieved by the supported Pd-based catalysts. The major problem associated with that is related to the low selectivity of H2O2. Despite great efforts have been devoted to constructing the Pd-based catalysts by introducing the second metals, understanding high-performance Pd-based catalysts for the direct H2O2 generation from either deep characterization or theoretical investigation are still extremely limited.


This is a schematic illustration showing the activity and selectivity toward H2O2 synthesis of 5 wt% Pd@Ni-3/TiO2, 5 wt% Pd@NiO-x/TiO2 (x = 1, 2, 3, 4), 5 wt% Pd@void@Ni-3/TiO2 and 5 wt% Pd/TiO2.

Credit: ©Science China Press

In a new overview published in the Beijing-based National Science Review, scientists at the Soochow University present the latest advances in direct H2O2 generation. Co-authors Yonggang Feng, Qi Shao, Bolong Huang, Junbo Zhang, and Xiaoqing Huang developed a class of Pd@NiO-x nanoparticles with unique core@shell interface structure, which achieves high activity, selectivity and stability for the direct H2O2 synthesis.

These scientists likewise interpreted the mechanism from both electronic and energetic views.

"Traditional Pd-based catalysts are very active for the side reactions, such as the decomposition and hydrogenation of H2O2 as well as the formation of H2O," they state in an article titled "Surface engineering in the interface of core/shell nanoparticles promotes hydrogen peroxide generation".

"It is considered that the intrinsic surface property of Pd-based catalysts is essential for the selectivity and activity of the direct H2O2 synthesis," they add. "This arises because the barrier for O-O bond scission is sensitive to Pd surface structure, the key parameter governing H2O2 synthesis and decomposition activity."

The creation of porous NiO shell is beneficial for exposing Pd active sites and thus enhancing the productivity of H2O2. "By tuning the composition of Pd@NiO-x NPs and the reaction condition, the efficiency of H2O2 synthesis could be well optimized with 5 wt% Pd@NiO-3/TiO2 exhibiting the highest productivity (89 mol/(kgcath)) and selectivity (91%) to H2O2 as well as excellent stability," they state.

"The first principles simulations further revealed the mechanism from both electronic and energetic views," the scientists interpreted. "The superiority in selectivity is achieved by a spontaneous bond scission of H-H and charge transfer from O20 to O22- within the cavity of NiO interfacing with Pd surface.,"

"The high selectivity and activity making it one of the best catalysts for the direct H2O2 synthesis reported to date," they add. "The present work reported here highlights the importance of surface and interface engineering of Pd-based catalysts for the direct H2O2 synthesis with largely enhanced activity and selectivity."

###

This research received funding from the Ministry of Science and Technology (2016YFA0204100, 2017YFA0208200), the National Natural Science Foundation of China (21571135), Young Thousand Talented Program, Jiangsu Province Natural Science Fund for Distinguished Young Scholars (BK20170003), the project of scientific and technologic infrastructure of Suzhou (SZS201708), the start-up supports from Soochow University, and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

See the article:

Yonggang Feng, Qi Shao, Bolong Huang, Junbo Zhang, and Xiaoqing Huang
Surface Engineering in the Interface of Core/Shell Nanoparticles Promotes Hydrogen Peroxide Generation
Natl Sci Rev
https://doi.org/10.1093/nsr/nwy065

The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country's rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

Media Contact

Xiaoqing Huang
hxq006@suda.edu.cn

http://www.scichina.com/ 

Xiaoqing Huang | EurekAlert!
Further information:
http://dx.doi.org/10.1093/nsr/nwy065

Further reports about: Interfacial Nanoparticles catalysts decomposition hydrogen peroxide

More articles from Life Sciences:

nachricht Elusive compounds of greenhouse gas isolated by Warwick chemists
18.09.2019 | University of Warwick

nachricht Study gives clues to the origin of Huntington's disease, and a new way to find drugs
18.09.2019 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Stroke patients relearning how to walk with peculiar shoe

18.09.2019 | Innovative Products

Statistical inference to mimic the operating manner of highly-experienced crystallographer

18.09.2019 | Physics and Astronomy

Scientists' design discovery doubles conductivity of indium oxide transparent coatings

18.09.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>