Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interfacial engineering core@shell nanoparticles for active and selective direct H2O2 generation

19.09.2018

Hydrogen peroxide (H2O2) is a versatile chemical in modern industry, widely applied in many different fields. To date, H2O2 is industrially manufactured by an indirect process that involves the sequential hydrogenation and oxidation of alkyl anthraquinone, which is however a multi-step process with high-cost and energy-intensive. On the sharp contrary, the direct synthesis of H2O2 from H2 and O2 is expected to be the most efficient way to produce H2O2 due to the remarkable advantages of atom economy, low energy consumption and only by-product of H2O.

Hitherto, the direct synthetic route is mainly achieved by the supported Pd-based catalysts. The major problem associated with that is related to the low selectivity of H2O2. Despite great efforts have been devoted to constructing the Pd-based catalysts by introducing the second metals, understanding high-performance Pd-based catalysts for the direct H2O2 generation from either deep characterization or theoretical investigation are still extremely limited.


This is a schematic illustration showing the activity and selectivity toward H2O2 synthesis of 5 wt% Pd@Ni-3/TiO2, 5 wt% Pd@NiO-x/TiO2 (x = 1, 2, 3, 4), 5 wt% Pd@void@Ni-3/TiO2 and 5 wt% Pd/TiO2.

Credit: ©Science China Press

In a new overview published in the Beijing-based National Science Review, scientists at the Soochow University present the latest advances in direct H2O2 generation. Co-authors Yonggang Feng, Qi Shao, Bolong Huang, Junbo Zhang, and Xiaoqing Huang developed a class of Pd@NiO-x nanoparticles with unique core@shell interface structure, which achieves high activity, selectivity and stability for the direct H2O2 synthesis.

These scientists likewise interpreted the mechanism from both electronic and energetic views.

"Traditional Pd-based catalysts are very active for the side reactions, such as the decomposition and hydrogenation of H2O2 as well as the formation of H2O," they state in an article titled "Surface engineering in the interface of core/shell nanoparticles promotes hydrogen peroxide generation".

"It is considered that the intrinsic surface property of Pd-based catalysts is essential for the selectivity and activity of the direct H2O2 synthesis," they add. "This arises because the barrier for O-O bond scission is sensitive to Pd surface structure, the key parameter governing H2O2 synthesis and decomposition activity."

The creation of porous NiO shell is beneficial for exposing Pd active sites and thus enhancing the productivity of H2O2. "By tuning the composition of Pd@NiO-x NPs and the reaction condition, the efficiency of H2O2 synthesis could be well optimized with 5 wt% Pd@NiO-3/TiO2 exhibiting the highest productivity (89 mol/(kgcath)) and selectivity (91%) to H2O2 as well as excellent stability," they state.

"The first principles simulations further revealed the mechanism from both electronic and energetic views," the scientists interpreted. "The superiority in selectivity is achieved by a spontaneous bond scission of H-H and charge transfer from O20 to O22- within the cavity of NiO interfacing with Pd surface.,"

"The high selectivity and activity making it one of the best catalysts for the direct H2O2 synthesis reported to date," they add. "The present work reported here highlights the importance of surface and interface engineering of Pd-based catalysts for the direct H2O2 synthesis with largely enhanced activity and selectivity."

###

This research received funding from the Ministry of Science and Technology (2016YFA0204100, 2017YFA0208200), the National Natural Science Foundation of China (21571135), Young Thousand Talented Program, Jiangsu Province Natural Science Fund for Distinguished Young Scholars (BK20170003), the project of scientific and technologic infrastructure of Suzhou (SZS201708), the start-up supports from Soochow University, and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

See the article:

Yonggang Feng, Qi Shao, Bolong Huang, Junbo Zhang, and Xiaoqing Huang
Surface Engineering in the Interface of Core/Shell Nanoparticles Promotes Hydrogen Peroxide Generation
Natl Sci Rev
https://doi.org/10.1093/nsr/nwy065

The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country's rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

Media Contact

Xiaoqing Huang
hxq006@suda.edu.cn

http://www.scichina.com/ 

Xiaoqing Huang | EurekAlert!
Further information:
http://dx.doi.org/10.1093/nsr/nwy065

Further reports about: Interfacial Nanoparticles catalysts decomposition hydrogen peroxide

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>