Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interactions between substances determine allergenic potential

21.12.2011
Scientists at the University of Gothenburg, Sweden, have used advanced light microscopy to show that a substance can be differently absorbed by the skin, depending on what it is mixed with. This may determine whether it causes contact allergy or not.

"We have also been able to identify specific cells and proteins in the skin with which a contact allergen interacts. The results increase our understanding of the mechanisms behind contact allergy", says Carl Simonsson at the Department of Chemistry, University of Gothenburg.

The skin is the largest organ in the human body and plays many vital roles, one of which is to prevent harmful microorganisms from invading the body. The principal barrier is constituted by a layer of skin cells around a few microns thick, known as the "stratum corneum". Despite being so thin, this layer effectively protects us from e.g. bacteria and viruses.

The skin, however, is not adapted to deal with and prevent absorption of many of the chemicals that we are exposed to today. This may lead to various types of diseases, such as contact allergy, which affects approximately 20% of people in Sweden.

The work presented in Carl Simonsson's thesis describes the use of an advanced form of light microscopy known as "two-photon microscopy", which makes it possible to follow substances absorbed into the skin. The method is unique in that it allows us to see not only how well a substance is absorbed, but also what happens to it, and the location in the skin that the substance eventually comes to.

The skin barrier and the way in which various substances are absorbed are highly significant also for the development of new drugs. Creams and ointments are for many reasons an interesting alternative to tablets, which have to be taken by mouth. The barrier properties of the skin may in this case present an obstacle to drug absorption, making it difficult for sufficient amounts of the drug to penetrate the skin to give a clinical effect.

"We have used two-photon microscopy to study a new type of ointment that it may be possible to use to improve the absorption, and thus the clinical effect, of certain drugs that are used on the skin", says Carl Simonsson.

The thesis has been successfully defended.

This PhD project has been conducted under the auspices of the Centre for Skin Research, SkinResGU (http://www.skin.org.gu.se), which is a newly formed multidisciplinary research centre at the University of Gothenburg and Chalmers University of Technology, focused on investigating the molecular processes that are involved when the skin is exposed to drugs, chemicals, nanoparticles and radiation.

Carl Simonsson | EurekAlert!
Further information:
http://www.gu.se

More articles from Life Sciences:

nachricht Nonstop Tranport of Cargo in Nanomachines
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Researchers find social cultures in chimpanzees
20.11.2018 | Universität Leipzig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>