Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insulin-creating cell research may lead to better diabetes treatment

29.10.2010
Beta cells, which make insulin in the human body, do not replicate after the age of 30, indicating that clinicians may be closer to better treating diabetes.

Type 1 diabetes is caused by a loss of beta cells by auto-immunity while type 2 is due to a relative insufficiency of beta cells. Whether beta cells replicate after birth has remained an open issue, and is critically important for designing therapies for diabetes.

By using radioactive carbon-14 produced by above-ground nuclear testing in the 1950s and '60s, researchers have determined that the number of beta cells remains static after age 30.

Lawrence Livermore National Laboratory scientist Bruce Buchholz, with collaborators from the National Institutes of Health, used two methods to examine adult human beta cell turnover and longevity.

Using LLNL's Center for Accelerator Mass Spectrometry, Buchholz measured the amount of carbon 14 in DNA in beta cells and discovered that after age 30, the body does not create any new beta cells, thus decreasing the capacity to produce insulin as a person ages.

Carbon 14 atmospheric concentration levels remained relatively stable until the Cold War, when above-ground nuclear bomb tests caused a sharp increase, or peak, which decreased slowly after the end of above-ground testing in 1963. This spike in carbon 14 in the atmosphere serves as a chronometer of the past 57 years.

Because DNA is stable after a cell has gone through its last cell division, the concentration of carbon 14 in DNA serves as a date mark for when a cell was born and can be used to date cells in humans.

"We found that beta cells turnover up to about age 30, and there they remain throughout life," Buchholz said. "The findings have implications for both type 1 and type 2 diabetes."

Type 1 diabetes is an auto-immune disease in which the body attacks beta cells. Both genetic predisposition and environmental triggers that are poorly understood have been implicated in the disease development. Disease onset is frequent during childhood but can occur throughout life and requires lifelong insulin injections/pump delivery. The body simply lacks the ability to make insulin. Type 2 diabetes (often called adult onset diabetes) is common in older people whose ability to secrete sufficient insulin to regulate blood sugar deteriorates as they age and is often due to increased demand in obese people.

"It could be due to loss of beta cells with age," Buchholz said. "The body doesn't make new ones in adulthood and there might not be enough cells to control blood sugar."

In addition, as the obesity rate increases, the incidence of type 2 diabetes increases and it is now starting to be found in obese children.

Buchholz said there is active research in stem cell therapies to replace lost beta cells for both types of diabetes. "But with these new findings, it isn't clear how easy it will be to get the body to make more beta cells in adulthood, when it is not a natural process," he said. "At the surface, it seems like coaxing the body to do what it does naturally will be easier to accomplish."

The research was funded by the National Institute of Diabetes, Digestive and Kidney Diseases at the National Institutes of Health (NIH) and NIH/National Center for Research Resources. It appears in the October issue of The Journal of Clinical Endocrinology & Metabolism.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov
http://www.llnl.gov/news/newsreleases/2010/Oct/NR-10-10-05.html

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>