Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights come from tracing cells that scar lungs

02.12.2011
Tracking individual cells within the lung as they move around and multiply has given Duke University researchers new insights into the causes of Idiopathic Pulmonary Fibrosis (IPF) a disease which can only be treated now by lung transplantation.

IPF fills the delicate gas exchange region of the lung with scar tissue, progressively restricting breathing. The Duke University Medical Center researchers have discovered that some commonly held ideas about the origins of the scar-forming (fibrotic) cells are oversimplified, if not wrong.

“We are the first to show that pericytes, a population of cells previously described to play a role in the development of fibrosis in other organs, are present in fibrotic lung tissue,” said Christina Barkauskas, M.D., a pulmonary fellow in the Duke Division of Pulmonary, Allergy and Critical Care Medicine.

The team found that pericytes move from blood vessels into fibrotic regions, and were in the damaged lungs of both humans and mice. In mice, they also showed that the epithelial cells, which make up the lacy sacs called alveoli, could divide and repair the damage in the gas-exchange location, but these cells were not the source of scarring.

Idiopathic pulmonary fibrosis affects about 100,000 people in the U.S. each year and leads to death within three years of diagnosis.

The study was published the week of Nov. 28 in PNAS Plus online edition.

“We don’t know yet whether the pericytes make the scar matrix itself or just release signals that stimulate the scarring process, but either way, they are a potential target for new therapies,” said Brigid Hogan, Ph.D., senior author and chair of the Duke Department of Cell Biology.

The researchers used genetic lineage tracing to study the origin of cells that gathered in fibrotic areas. They gave several different cell types an indelible fluorescent tag and then followed the cells over time.

The cells kept the tag even if they multiplied, migrated within the lung, or differentiated into another cell type.

Paul Noble, M.D., co-author and chief of the Pulmonary Division at Duke, said that identifying the source of the lethal expansion of the scarring (fibroblast) cells is a critical missing link in understanding disease progression.

Previous studies had suggested that the epithelial cells in the alveoli are a source of fibroblast accumulation after lung injury, he said.

“This study used the newest tracing approaches to conclusively demonstrate, however, that the alveolar epithelium isn’t a significant source for fibroblast accumulation following lung injury in mice,” Noble said. “The studies suggest that there may be several sources for the scar-forming cell accumulation in fibrosis, including pericytes, which hadn’t been implicated in lung fibrosis until now.”

Noble said that the study data provide new insights into the sources of scar-forming cells and would help to target the correct cell population that causes disease progression.

Now the researchers are focusing on what these cells may make that could promote a healing process. “One idea is that perhaps in IPF these epithelial cells have lost the ability to repair damage to the lung, so that scarring continues inexorably and cannot be restrained – perhaps we could find a way to assist the repair process,” Hogan said. “Promoting the healing process might be another therapeutic approach.”

Other authors include Jason R. Rock and Yan Xue of the Duke Department of Cell Biology; Michael J. Cronce and Jiurong Liang of the Duke Division of Pulmonary, Allergy and Critical Care Medicine; and Jeffrey R. Harris of the Duke Division of Cellular Therapy. Jason Rock is now with the University of California -- San Francisco.

Mary Jane Gore | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea
10.12.2018 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Carnegie Mellon researchers probe hydrogen bonds using new technique
10.12.2018 | Carnegie Mellon University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>