New Insights into Cell Migration and Tissue Morphogenesis in Zebrafish

Organization of epithelial cell rosettes around zones of cell-cell contacts (red). Individual cell rosettes separate from the surrounding tissue and form neuromasts, sensors that are located at different points along the fish body surface, which detect water flow and movements. (Photo: David Hava/Copyright: MDC)<br>

They studied the development of the lateral line organ in zebrafish, a sensory system found in fish and amphibians which serves to detect water flow and movements. Their findings show that two genes regulate cell organization within this epithelial tissue, which is found at different points along the fish body surface. Both genes also play a role in cancer development. (Journal of Cell Science, 10. February 10, 2009, doi: 10.1242/jcs.032102)*.

The study of David Hava, Dr. Ulrike Forster and Dr. Salim Abdelilah-Seyfried focused on the formation of cellular rosettes within an epithelial tissue and their separation from it. Normally, each cellular rosette gives rise to a neuromast, a sensor whose function it is to detect water flow movements.

The researchers have described for the first time the cellular machinery that is needed to form these epithelial cell rosettes within a compact migratory tissue.

Their research demonstrates that two genes have an important function in the formation of cellular rosettes: namely, to allow cells within the rosettes to adhere more strongly to each other than to the cells of the surrounding tissue. However, if one of the genes is lacking, the cells within the rosettes adhere to each other less strongly and the rosettes can no longer separate entirely from the surrounding tissue. As a consequence, fewer sensors develop.

Cell migration is not only significant for embryonic development but also in the development of cancer. Being a vertebrate, the tiny zebrafish shares many of the features of human systems which is why scientists use it as a model organism for studying vertebrate development and disease.

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Strasse 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 – 38 96
Fax: +49 (0) 30 94 06 – 38 33
e-mail: presse@mdc-berlin.de

Media Contact

Barbara Bachtler Max-Delbrück-Centrum

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors