Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insect Antibiotic Provides New Way to Eliminate Bacteria

15.11.2018

An antibiotic called thanatin attacks the way the outer membrane of Gram-negative bacteria is built. Researchers at the University of Zurich have now found out that this happens through a previously unknown mechanism. Thanatin, produced naturally by the spined soldier bug, can therefore be used to develop new classes of antibiotics.

The global emergence of multi-drug resistant bacteria is posing a growing threat to human health and medicine. “Despite huge efforts from academic researchers and pharmaceutical companies, it has proven very difficult to identify effective new bacterial targets for antibiotic discovery,” says John A. Robinson from the Department of Chemistry at UZH.


“One of the major challenges is identifying new mechanisms of antibiotic action against dangerous Gram-negative bacteria.” This group of bacteria includes a number of dangerous pathogens, such as Pseudomonas aeruginosa, which causes life-threatening lung infections, and pathogenic Escherichia coli strains.

Elimination of outer protective shield

An interdisciplinary team of chemists and biologists from UZH and ETH Zurich have now uncovered how thanatin – an antibiotic produced naturally by the spined soldier bug Podisus maculiventris – targets Gram-negative bacteria. The insect’s antibiotic prevents the outer membrane of the bacteria from forming – an unprecedented mechanism in an antibiotic.

All Gram-negative bacteria have a double cell membrane, with the outer membrane taking on an important defensive function and helping the bacteria to block the entry of potentially toxic molecules into the cell. The outside of this membrane is made up of a protective layer of complex fat-like substances called lipopolysaccharides (LPS), without which the bacteria could not survive.

Focusing on protein-protein interactions

Using state-of-the-art methods, the Zurich researchers succeeded in proving that thanatin disrupts the transport of LPS molecules to the outer membrane. The transport pathway consists of a super-structure of seven different proteins that assemble to form a bridge from the inner membrane across the periplasmic space to the outer membrane.

LPS molecules cross this bridge to the cell’s surface, where they form part of the structure of the outer membrane. Thanatin is able to block the protein-protein interactions that are needed to form the bridge. As a result, LPS molecules are prevented from reaching their destination and the biogenesis of the entire outer membrane is inhibited – which is fatal for the bacteria.

New potential clinical candidates

“This is an unprecedented mechanism of action for an antibiotic and immediately suggests ways to develop new molecules as antibiotics targeting dangerous pathogens,” explains Robinson. “This finding shows us a way to develop substances that specifically inhibit protein-protein interactions in bacterial cells.”

This new mechanism is already being used by an industry partner – Polyphor AG in Allschwil near Basel – to develop new potential clinical candidates. The company has a proven track record of success in this area and has recently also developed the antibiotic murepavadin in cooperation with UZH.

Murepavadin is currently in phase III clinical tests in patients with life-threatening lung infections caused by Pseudomonas aeruginosa. “Another new antibiotic targeting other Gram-negative pathogens would be a very welcome addition to the new medicines urgently needed for effective antibacterial therapy,” says Robinson.

Wissenschaftliche Ansprechpartner:

Prof. John A. Robinson
Department of Chemistry
University of Zurich
Phone: +41 79 438 23 33
E-mail: john.robinson@chem.uzh.ch

Originalpublikation:

Stefan U. Vetterli, Katja Zerbe, Maik Müller, Matthias Urfer, Milon Mondal, Shuang-Yan Wang, Kerstin Moehle, Oliver Zerbe, Alessandra Vitale, Gabriella Pessi, Leo Eberl, Bernd Wollscheid, and John A. Robinson. Science Advances, 2018, 16 November. DOI: 10.1126/sciadv.aau2634

Beat Müller | Universität Zürich
Further information:
http://www.uzh.ch/

More articles from Life Sciences:

nachricht New mechanisms regulating neural stem cells
21.02.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht A landscape of mammalian development
21.02.2019 | Max-Planck-Institut für molekulare Genetik

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

A Volcanic Binge And Its Frosty Hangover

21.02.2019 | Earth Sciences

Cleaning 4.0 in the meat processing industry – higher cleaning efficiency

21.02.2019 | Trade Fair News

New mechanisms regulating neural stem cells

21.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>