Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insect Antibiotic Provides New Way to Eliminate Bacteria

15.11.2018

An antibiotic called thanatin attacks the way the outer membrane of Gram-negative bacteria is built. Researchers at the University of Zurich have now found out that this happens through a previously unknown mechanism. Thanatin, produced naturally by the spined soldier bug, can therefore be used to develop new classes of antibiotics.

The global emergence of multi-drug resistant bacteria is posing a growing threat to human health and medicine. “Despite huge efforts from academic researchers and pharmaceutical companies, it has proven very difficult to identify effective new bacterial targets for antibiotic discovery,” says John A. Robinson from the Department of Chemistry at UZH.


“One of the major challenges is identifying new mechanisms of antibiotic action against dangerous Gram-negative bacteria.” This group of bacteria includes a number of dangerous pathogens, such as Pseudomonas aeruginosa, which causes life-threatening lung infections, and pathogenic Escherichia coli strains.

Elimination of outer protective shield

An interdisciplinary team of chemists and biologists from UZH and ETH Zurich have now uncovered how thanatin – an antibiotic produced naturally by the spined soldier bug Podisus maculiventris – targets Gram-negative bacteria. The insect’s antibiotic prevents the outer membrane of the bacteria from forming – an unprecedented mechanism in an antibiotic.

All Gram-negative bacteria have a double cell membrane, with the outer membrane taking on an important defensive function and helping the bacteria to block the entry of potentially toxic molecules into the cell. The outside of this membrane is made up of a protective layer of complex fat-like substances called lipopolysaccharides (LPS), without which the bacteria could not survive.

Focusing on protein-protein interactions

Using state-of-the-art methods, the Zurich researchers succeeded in proving that thanatin disrupts the transport of LPS molecules to the outer membrane. The transport pathway consists of a super-structure of seven different proteins that assemble to form a bridge from the inner membrane across the periplasmic space to the outer membrane.

LPS molecules cross this bridge to the cell’s surface, where they form part of the structure of the outer membrane. Thanatin is able to block the protein-protein interactions that are needed to form the bridge. As a result, LPS molecules are prevented from reaching their destination and the biogenesis of the entire outer membrane is inhibited – which is fatal for the bacteria.

New potential clinical candidates

“This is an unprecedented mechanism of action for an antibiotic and immediately suggests ways to develop new molecules as antibiotics targeting dangerous pathogens,” explains Robinson. “This finding shows us a way to develop substances that specifically inhibit protein-protein interactions in bacterial cells.”

This new mechanism is already being used by an industry partner – Polyphor AG in Allschwil near Basel – to develop new potential clinical candidates. The company has a proven track record of success in this area and has recently also developed the antibiotic murepavadin in cooperation with UZH.

Murepavadin is currently in phase III clinical tests in patients with life-threatening lung infections caused by Pseudomonas aeruginosa. “Another new antibiotic targeting other Gram-negative pathogens would be a very welcome addition to the new medicines urgently needed for effective antibacterial therapy,” says Robinson.

Wissenschaftliche Ansprechpartner:

Prof. John A. Robinson
Department of Chemistry
University of Zurich
Phone: +41 79 438 23 33
E-mail: john.robinson@chem.uzh.ch

Originalpublikation:

Stefan U. Vetterli, Katja Zerbe, Maik Müller, Matthias Urfer, Milon Mondal, Shuang-Yan Wang, Kerstin Moehle, Oliver Zerbe, Alessandra Vitale, Gabriella Pessi, Leo Eberl, Bernd Wollscheid, and John A. Robinson. Science Advances, 2018, 16 November. DOI: 10.1126/sciadv.aau2634

Beat Müller | Universität Zürich
Further information:
http://www.uzh.ch/

More articles from Life Sciences:

nachricht Bacteria loop-the-loop
27.02.2020 | University of Göttingen

nachricht Project on microorganisms: Saci, the bio-factory
27.02.2020 | Universität Duisburg-Essen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Bacteria loop-the-loop

27.02.2020 | Life Sciences

Project on microorganisms: Saci, the bio-factory

27.02.2020 | Life Sciences

New method converts carbon dioxide to methane at low temperatures

27.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>