Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The influence of the environment on genetically modified wheat

13.07.2010
Differences between greenhouse and field trial results

In the greenhouse, lines of genetically modified wheat carrying a resistance gene against the fungal disease mildew have a yield which is up to twice as high as that of control plants. In the field however, this ratio is reversed for certain, but not all, wheat lines.

A study performed within the National Research Programme «Benefits and Risks of the Deliberate Release of Genetically Modified Plants» (NRP 59) concludes from these results that data from the greenhouse cannot be applied to the situation in the field and that therefore field trials are important.

Thanks to a natural resistance gene from an old Asian wheat variety genetically modified wheat is more resistant to the fungal disease mildew, also in the field. But in field trials, some wheat lines show a reduced yield or a modified ear shape, which had not been observed in the greenhouse. Such accompanying variations have been known for some time in breeding processes, but now, for the first time, researchers working at the University of Zurich have described in PLoS One (*) how significant the differences between greenhouse and field trials really are.

Reduced yield
In the greenhouse, where many plants are a target for mildew when not treated with fungicides, the genetically modified wheat has an advantage due to its enhanced resistance. Its yield is up to twice as high as that of the untreated non-transgenic control plants. In the field however, the wheat plants are up against droughts, insect infestation and competition with other plants. In this environment, the genetically modified wheat plants are still more resistant, but this leads to a drop in yield for some wheat lines. Furthermore, in field trials the ears of certain genetically modified wheat lines take on a different shape, which favours infestation with rye ergot, another fungus.

These side effects do not show up in some wheat lines, in others the degree of the effects varies. This might have to do with variations in the position and activity of the resistance gene.

Field trials are necessary
The experiments show that it is not always possible to identify plants which will be able to assert themselves in a natural environment by performing trials in the protected setting of a greenhouse. The complex relationships between plants and their environment are only revealed in field trials.

(*) Simon Zeller, Olena Kalinina, Susanne Brunner, Beat Keller und Bernhard Schmid (2010). Transgene × Environment Interactions in Genetically Modified Wheat. PLoS One, online: http://dx.plos.org/10.1371/journal.pone.0011405

National Research Programme «Benefits and Risks of the Deliberate Release of Genetically Modified Plants» (NRP 59)
Within the NRP 59, researchers active in a total of 29 research projects are investigating the benefits and risks of genetically modified plants with regard to the ecological, social, economic, legal and political situation in Switzerland. In one of these projects, an association of research groups belonging to various higher education institutions – the wheat-cluster.ch – is analyzing the fungal resistance of genetically modified wheat in a field trial at the Agroscope Reckenholz-Tänikon ART research station.

www.nrp59.ch

Contact:
Prof. Bernhard Schmid
Institute of Evolutionary Biology and Environmental Sciences
Universität Zürich
Winterthurerstrasse 190
8057 Zürich
Phone: ++41 (0)44 635 52 05
E-mail: bernhard.schmid@ieu.uzh.ch

| idw
Further information:
http://www.snf.ch
http://dx.plos.org/10.1371/journal.pone.0011405

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>