Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-Inflicted Asymmetry

01.08.2012
Crystallization-induced asymmetric synthesis of nonracemic platinum(IV) polysulfide tris(chelate) complexes

Asymmetry of molecules can make the difference between a drug and a poison. It is therefore vital to control this parameter in synthesis. Polish researchers found how stirring a reaction mixture in the presence of suitable seeding crystals can strongly affect the products. They report their findings in the European Journal of Inorganic Chemistry.

Witold Rybak and co-workers at the University of Wroc³aw investigated the synthesis of a platinum(IV) polysulfide anionic complex (NH4)2[Pt(S5)3]•2H2O and observed that vigorous stirring during the preparation played a unique role in determining the properties of the product obtained. Without stirring, the product was racemic, its composition did not depend upon the reactants or on the crystals used for seeding.

When the reaction mixture was stirred vigorously during the whole synthesis in the presence of a particular seeding crystal, however, the properties of the product were surprisingly similar to those of the seeding crystal used. This observation and the accompanying study also led to the elucidation of the mechanism of this chiral synthesis.

Previously, the asymmetric transformation of the reaction product during crystallization was believed to determine the properties of the final product obtained; however, this assumption had not been able to explain some experimental observations. A closer study has now led to the recognition of the true mechanism: the reason behind the formation of a product of a certain configuration is a crystallization-induced autocatalytic asymmetric synthesis mechanism. The seeding crystal molecule catalyzes the formation of more molecules of its own kind.

This discovery can be used to synthesize products of the desired chirality by selecting the seeding crystal with the right configuration and performing the synthesis under continuous stirring.

Author: Witold Rybak, Uniwersytet Wroc³awski (Poland), http://faculty.pages.wchuwr.pl/pracownik/WitoldRybak/en
Title: Crystallization-Induced Asymmetric Synthesis of Nonracemic Platinum(IV) Polysulfide Tris(chelate) Complexes

European Journal of Inorganic Chemistry , 2012, No. 23, Permalink to the article: http://dx.doi.org/10.1002/ejic.201200479

Witold Rybak | Wiley-VCH
Further information:
http://www.wiley-vch.de

More articles from Life Sciences:

nachricht Human skin is an important source of ammonia emissions
27.05.2020 | Max-Planck-Institut für Chemie

nachricht Biotechnology: Triggered by light, a novel way to switch on an enzyme
27.05.2020 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New 5G switch provides 50 times more energy efficiency than currently exists

27.05.2020 | Information Technology

Return of the Blob: Surprise link found to edge turbulence in fusion plasma

27.05.2020 | Physics and Astronomy

Upwards with the “bubble shuttle”: How sea floor microbes get involved with methane reduction in the water column

27.05.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>