Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increased understanding of immune system activation

04.03.2009
Linda Andersson at Malmö University in Sweden has studied the ability of dendritic cells to sample the surrounding environment.

To understand how different materials are taken up and what happens within the cells can for example facilitate the development of new vaccines.

"The immune system is a large and important part of ourselves and the dendritic cells are important for the activation of this system", Linda Andersson says.

"One task of the immune system is to protect the body from infections. The dendritic cells have an unique ability to obtain samples from its environment and treat the material, in process called endocytosis. In my study I have explored how dendritic cells recognise and capture particles. "

To study the endocytosing ability of dendritic cells Linda Andersson has used zeolite particles and through them different biomolecules are transported into the cell. With the help of zeolites you can follow different paths and study what happens within the cell.

"The result shows that zeolites are an useful tool for studying endocytosis and that there are differences between various dendritic cells," Linda Andersson says.

A method is developed for studying the early activities of the endocytosing mechanism within the cells. From this you can go further and study other processes and other types of cells.

Zeolites belong to a group of silica particles which easily can adsorb different types of molecules, for example antibodies and other proteins. The type of molecule and the charge and amount of molecules affects the endocytosing ability of the cells.

Dendritic cells are found in different parts of the body, for example skin, mucous, spleen and circulating in the blood. Linda Andersson has chosen to study the cells in the blood. In her study dendritic cells from the blood are compared with dendritic cells produced in vitro, that is from a culture in an artificial environment. Dendritic cells are not so common in the blood. Through in vitro-culture you can easily produce many dendritic cells.

"The differences in the early events of the endocytosing mechanism between these two types of cells were considerable", Linda Andersson says.

This is important to point out, since in vitro-cells are among other things considered in the development of new vaccines. The blood cells are better at taking up particles while the in vitro-cells are better at taking up proteins and soluble molecules.

The thesis by Linda Andersson contributes to an increased understanding of how the important dendritic cells work.

"I hope that the method developed in my study can be used to produce more knowledge about the different paths of the endocytosed material and how the dendritic cells recognise and capture the bodies own material and foreign harmful material", Linda Andersson says.

For more information contact Linda Andersson, tel +46 40 665 79 57, +46 704 94 33 31, e-mail: linda.andersson@mah.se

Pressofficer Hanna Holm; +46-40 665 70 22; Hanna.Holm@mah.se

Hanna Holm | idw
Further information:
http://www.mah.se

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>