Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Increased Blood Flow triggers Liver Regeneration


The liver is one of the few human organs that completely regenerates within a few weeks after more than half of the organ has been removed. Within the framework of the Collaborative Research Center 974 and with support from the German Center for Diabetes Research (DZD e.V.), scientists at the German Diabetes Center (DDZ), in cooperation with colleagues from HHU and Düsseldorf University Hospital (UKD) showed for the first time that increased blood flow through the small blood vessels of the liver triggers the release of signals from cells of these vessels, thus promoting liver growth. The results are published in the current issue of Nature.

The liver is one of the most important human organs. It is essential for metabolism, blood detoxification and the functioning of the immune system. Moreover, the liver is the only organ which can fully regenerate its cell mass within a few weeks after more than half of the organ has been removed.

An illustration of an artificially stained blood vessel is shown. It is a scanning electron micrograph of a hepatic blood vessel.

The image was taken and edited by Dr. Daniel Eberhard (Institute of Metabolic Physiology, HHU) and S. Köhler (Center for Advanced Imaging, HHU).

The researchers led by Professor Eckhard Lammert have discovered that it is due to increased blood flow and subsequent dilation of the liver vasculature that the liver receives signals for growth. The signals come from the cells of the blood vessels that react to the mechanical stimulation. The publication is based on the findings published in 2001 that blood vessels affect organs in their function and growth (Lammert et al., Science 2001).

"In our study of the liver and its blood vessels, we identified an important trigger for organ growth. For the first time, we were able to show that blood flow and vasodilatation release growth-promoting signals from blood vessels," said Professor Eckhard Lammert, director of the Institute for Beta Cell Biology at the German Diabetes Center (DDZ) and head of the Institute for Metabolic Physiology at Heinrich Heine University Düsseldorf.

"In the future, these exciting results could also become important for the understanding and treatment of fatty liver disease in obesity and diabetes," added Professor Michael Roden, scientific director and board member of the German Diabetes Center and director of the Department of Endocrinology and Diabetology at Düsseldorf University Hospital.“

The research results are of great importance for understanding the complex processes involved in liver regeneration and its disorders,“ said Professor Dieter Häussinger, director of the Department of Gastroenterology, Hepatology and Infectious Diseases at Düsseldorf University Hospital and spokesperson of the Collaborative Research Center 974.

Experimental Procedure

The molecular causes of this organ regeneration are the subject of a study published by Düsseldorf scientists in the journal Nature (Lorenz et al., Nature 2018). Specifically, the scientists were able to show that increased blood flow through the liver leads to the release and activation of growth signals from blood vessels.

One of these signals is the hepatocyte growth factor (HGF), which is particularly important for the growth and survival of liver cells. The endothelial cells of the blood vessels recognize the increased blood flow through the liver by means of so-called integrins.

These are cell surface proteins that connect the extracellular matrix to the cytoskeleton and are able to activate other receptors such as the vascular endothelial growth factor receptor-3 (VEGFR3). The activation of the β1 integrin (a subunit of the integrins) due to the increased blood flow leads in endothelial cells to the activation of VEGFR3 and the activation and release of growth factors such as HGF. The latter induce the growth of the liver.

As soon as the liver has grown to its normal size and new blood vessels have formed, a normal amount of blood per endothelial cell flows through the liver again. This normal mechanical stimulation of the endothelial cells could explain why the liver stops growing. The scientists postulate that this molecular mechanism causes the liver to grow as soon as its organ size is reduced and then to stop growing when it is restored.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Eckhard Lammert
Institut für Stoffwechselphysiologie
Heinrich-Heine-Universität Düsseldorf
Universitätsstraße 1
40225 Düsseldorf
Tel.: +49 211 81-13234


Lorenz L, Axnick J, Buschmann T, Henning C, Urner S, Fang S, Nurmi H, Eichhorst N, Holtmeier R, Bódis K, Hwang JH, Müssig K, Eberhard D, Stypmann J, Kuss O, Roden M, Alitalo K, Häussinger D, Lammert E. Mechanosensing by β1 integrin induces angiocrine signals for liver growth and survival. Nature. 2018 Sep 26. doi: 10.1038/s41586-018-0522-3.

Weitere Informationen:

Christina Becker | idw - Informationsdienst Wissenschaft

Further reports about: Diabetes Regeneration blood flow blood vessels endothelial cells liver

More articles from Life Sciences:

nachricht Unusual virus defence decoded in the brain - new approach for virus encephalitis therapy
04.10.2018 | TWINCORE - Zentrum für Experimentelle und Klinische Infektionsforschung

nachricht Couples showing off: Songbirds are more passionate in front of an audience
04.10.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flying High with VCSEL Heating

Additive manufacturing processes are booming, with the rapid growth of the formnext trade fair a clear indication of this. At formnext 2018, the Fraunhofer Institute for Laser Technology ILT will be showing a new process in which the component in the powder bed is heated with laser diodes. As a result, distortion can be reduced, taller parts generated and new materials used.

In just three years, formnext has established itself as the industry meeting place to get the latest on additive manufacturing (AM) processes. With 470...

Im Focus: Breakthrough in quantum physics: Reaction of quantum fluid to photoexcitation of dissolved particles

Researchers from Graz University of Technology have described for the first time the dynamics which takes place within a trillionth of a second after photoexcitation of a single atom inside a superfluid helium nanodroplet.

In his research, Markus Koch, Associate Professor at the Institute of Experimental Physics of Graz University of Technology (TU Graz), concentrates on...

Im Focus: Chemists of TU Dresden develop highly porous material, more precious than diamonds

World Record of Cavities

Porosity is the key to high-performance materials for energy storage systems, environmental technologies or catalysts: The more porous a solid state material...

Im Focus: New function of “kidney-gene”: WT1 plays a role in the central nervous system and controls movement

The WT1 gene fulfills a central role in the development of a healthy, proper functioning kidney. Mutations in WT1 lead to impairments in kidney development and cause Wilms tumors, a pediatric kidney cancer. Researchers of the Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) in Jena have now discovered a further important function of WT1. It is also active outside the kidneys in the central nervous system and is involved in controlling movement. If the gene is missing in the spinal cord, locomotor aberrancies occur. The results have now been published in Life Science Alliance.

Transcription factor WT1 (Wilms tumor 1) has been known for nearly 30 years and it is significantly involved in the development of a healthy and properly...

Im Focus: Master of the tree – novel form of dendritic inhibition discovered

A unique feature that sets neurons apart from all other cells are their beautiful, highly elaborate dendritic trees. These structures have evolved to receive the vast majority of information entering a neuron, which is integrated and processed by virtue of the dendrites’ geometry and active properties. Higher brain functions such as memory and attention all critically rely on dendritic computations, which are in turn controlled by inhibitory synaptic input. A team of scientists, led by Johannes J. Letzkus (MPI for Brain Research), now has identified a novel form of inhibition that dominantly controls dendritic function and strongly depends on previous experiences.

Our brain is a remarkably complex system. It is not only comprised of billions of neurons, but each individual neuron by itself even has exceptional processing...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

Major Project: The New Silk Road

01.10.2018 | Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

Latest News

Fruit flies adapt to climate change through metabolic rewiring

04.10.2018 | Life Sciences

Couples showing off: Songbirds are more passionate in front of an audience

04.10.2018 | Life Sciences

Decoding the regulation of cell survival - A major step towards preventing neurons from dying

04.10.2018 | Interdisciplinary Research

Science & Research
Overview of more VideoLinks >>>